Source code for pyxtal.wyckoff_site

"""
Module for handling Wyckoff sites for both atom and molecule
"""

# Standard Libraries
from copy import deepcopy
import numpy as np

# External Libraries
from pymatgen.core import Molecule
from scipy.spatial.distance import cdist
from scipy.spatial.transform import Rotation as R

from pyxtal.constants import rad
from pyxtal.database.element import Element
from pyxtal.lattice import Lattice
from pyxtal.operations import (
    SymmOp,
    create_matrix,
    distance_matrix,
    filtered_coords,
)
from pyxtal.symmetry import Group, Wyckoff_position
from pyxtal.tolerance import Tol_matrix


[docs] class atom_site: """ Class for storing atomic Wyckoff positions with a single coordinate. Args: wp: a `WP <pyxtal.symmetry.Wyckoff_position.html> object coordinate (float): a fractional (x, y, z) coordinate specie (str): element name or symbol, or atomic number search (bool): whether or not search generator for special WP """ def __init__(self, wp=None, coordinate=None, specie=1, search=False): self.position = np.array(coordinate) self.position -= np.floor(self.position) self.specie = Element(specie).short_name self.wp = wp self.coordination = None self._get_dof() self.PBC = self.wp.PBC self.multiplicity = self.wp.multiplicity if search: self.search_position() self.update() def __str__(self): if not hasattr(self.wp, "site_symm"): self.wp.get_site_symmetry() s = "{:>2s} @ [{:7.4f} {:7.4f} {:7.4f}], ".format( self.specie, *self.position) s += f"WP [{self.wp.get_label()}] " if self.coordination is not None: s += f" CN [{self.coordination:2d}] " s += "Site [{:}]".format(self.wp.site_symm.replace(" ", "")) return s def __repr__(self): return str(self)
[docs] def copy(self): """ Simply copy the structure """ return deepcopy(self)
[docs] def save_dict(self): return { "position": self.position, "specie": self.specie, "wp": self.wp.save_dict(), }
def _get_dof(self): """ get the number of dof for the given structures: """ self.dof = self.wp.get_dof()
[docs] def get_bounds(self): """ get the number of dof for the given structures: """ self.bounds = [] for i in range(self.dof): self.bounds.append([0.0, 1.0]) return self.bounds
[docs] @classmethod def load_dict(cls, dicts): """ load the sites from a dictionary """ position = dicts["position"] specie = dicts["specie"] if "wp" in dicts: wp = Wyckoff_position.load_dict(dicts["wp"]) else: hn, index = dicts["hn"], dicts["index"] wp = Wyckoff_position.from_group_and_index( hn, index, use_hall=True) return cls(wp, position, specie)
[docs] def perturbate(self, lattice, magnitude=0.1): """ Random perturbation of the site Args: lattice: lattice vectors magnitude: the magnitude of displacement (default: 0.1 A) """ dis = (np.random.sample(3) - 0.5).dot(lattice) dis /= np.linalg.norm(dis) dis *= magnitude pos = self.position + dis.dot(np.linalg.inv(lattice)) self.update(pos)
[docs] def search_position(self, tol=1e-3): """ Sometimes, the initial position is not the proper generator Needs to find the proper generator """ found = False if self.wp.index > 0: wp0 = Group(self.wp.number, self.wp.dim)[0] for coord in wp0.apply_ops(self.position): coord -= np.floor(coord) ans = self.wp.ops[0].operate(coord) diff = coord - ans diff -= np.rint(diff) if np.sum(diff**2) < tol: found = True # print(found, coord, coord-ans) self.position = coord - np.floor(coord) break if not found: print("\nInput xyz", self.position) print("Target operation", self.wp.ops[0].as_xyz_str()) raise ValueError("Cannot generate the desried generator")
[docs] def encode(self): """ transform dict to 1D vector [specie, wp.index, free x, y, z] """ xyz = self.wp.get_free_xyzs(self.position) # print(self.wp.ops[0].rotation_matrix, self.wp.get_frozen_axis(), self.wp.get_dof()) # print([self.specie, self.wp.index] + list(xyz)) return [self.specie, self.wp.index, *list(xyz)]
[docs] def shift_by_swap(self, swap_id): """ check if a shift is needed during swap May occur for special WP in the I/A/B/C/F cases e.g., in space group 71 (Immm), the permutation 4j(1/2,0,0.2) -> (0.2,0,1/2) -> 4f(0.7,1/2,0) it requires a shift of (0.5,0.5,0.5) """ wp, shift = self.wp.swap_axis(swap_id) return shift
[docs] def equivalent_set(self, tran, indices): """ Transform the wp to another equivalent set. Needs to update both wp and positions Args: tran: affine matrix indices: the list of transformed wps """ self.position = SymmOp(tran).operate(self.position) self.position -= np.floor(self.position) self.wp = self.wp.equivalent_set( indices[self.wp.index]) # update the wp index self.site_symm = self.wp.site_symm # update the site symmetry self.update()
[docs] def update(self, pos=None, reset_wp=False): """ Used to generate coords from self.position """ if pos is None: pos = self.position if reset_wp: self.wp.ops = Group(self.wp.number)[self.wp.index].ops self.coords = self.wp.apply_ops(pos) self.position = self.coords[0]
[docs] def get_translations(self, pos, axis): """ Get the displacement towards the reference positions Args: pos: reference position (1*3 vector) lattice: 3*3 matrix translation: axis: """ # diffs0 = pos - self.coords diffs0 = self.wp.apply_ops(pos) - self.position diffs = diffs0.copy() diffs -= np.rint(diffs) diffs[:, axis] = 0 return diffs0 - diffs
[docs] def get_disp(self, pos, lattice, translation): """ return the displacement towards the reference positions Args: pos: reference position (1*3 vector) lattice: 3*3 matrix translation: """ coords = self.wp.apply_ops(pos) diffs = coords - (self.position + translation) # coords = self.wp.apply_ops(self.position + translation) # diffs = pos - coords diffs -= np.rint(diffs) dists = np.linalg.norm(diffs.dot(lattice), axis=1) id = np.argmin(dists) # print("++++", id, dists[id], id, diffs[id], translation) #; import sys; sys.exit() return diffs[id], dists[id]
[docs] def check_with_ws2(self, ws2, lattice, tm, same_group=True): """ Given two Wyckoff sites, checks the inter-atomic distances between them. Args: - ws2: a different WP object (will always return False if two identical WS's are provided) - lattice: a 3x3 cell matrix - same_group: whether or not two WS's are in the same structure. Default value True reduces the calculation cost Returns: True or False """ # Ensure the PBC values are valid if self.PBC != ws2.PBC: raise ValueError("PBC values do not match between Wyckoff sites") # Get tolerance tol = tm.get_tol(self.specie, ws2.specie) # Symmetry shortcut method: check only some atoms if same_group is True: # We can either check one atom in WS1 against all WS2, or vice-versa # Check which option is faster if self.multiplicity > ws2.multiplicity: coords1 = [self.coords[0]] coords2 = ws2.coords else: coords1 = [ws2.coords[0]] coords2 = self.coords # Calculate distances dm = distance_matrix(coords1, coords2, lattice, PBC=self.PBC) # Check if any distances are less than the tolerance return not (dm < tol).any() # No symmetry method: check all atomic pairs else: dm = distance_matrix( self.wp.coords, ws2.coords, lattice, PBC=self.PBC) # Check if any distances are less than the tolerance return not (dm < tol).any()
[docs] def substitute_with_single(self, ele): """ chemical substitution with another element Args: ele (str): e.g. 'Zn' """ self.specie = ele return self
[docs] def substitute_with_linear(self, eles, direction, lattice): """ chemical substitution with another linear building block, e.g. CN Args: eles (str): e.g., ['C', 'N'] neighbors: two nearest neiboring atom xyz """ bond_length = 1.4 # direction = neighbors[1] - neighbors[0] # direction = np.dot(direction, lattice) # direction /= np.linalg.norm(direction) # Get the fraction coordinates shift = np.dot(bond_length / 2 * direction, np.linalg.inv(lattice)) site1 = self.copy() site2 = self.copy() site1.specie = eles[0] site2.specie = eles[1] site1.update(site1.position + shift) site2.update(site2.position - shift) return site1, site2
[docs] def to_mol_site(self, lattice, molecule, ori=None, reflect=False, type_id=0): """ Transform it to the mol_sites, i.e., to build a molecule on the current WP """ if ori is None: ori = [0, 0, 0] dicts = {} dicts["smile"] = molecule.smile dicts["type"] = type_id dicts["dim"] = 3 dicts["PBC"] = [1, 1, 1] dicts["hn"] = self.wp.hall_number dicts["index"] = self.wp.index dicts["lattice"] = lattice.matrix dicts["lattice_type"] = lattice.ltype dicts["center"] = self.position if molecule.smile not in ["Cl-"]: dicts["orientation"] = np.array(ori) dicts["rotor"] = molecule.get_torsion_angles() dicts["reflect"] = reflect return mol_site.from_1D_dicts(dicts)
[docs] class mol_site: """ Class for storing molecular Wyckoff positions and orientations within the `molecular_crystal` class. Each `mol_site` object represents an entire Wyckoff position, not necessarily a single molecule. This is the molecular version of the `Wyckoff_site` class. Attributes: mol (pyxtal_molecule): A pyxtal_molecule object representing the molecule at the site. position (list or array): A 3-vector representing the generating molecule's position in fractional coordinates. orientation (Orientation): An orientation object that describes the molecule's orientation. wp (Wyckoff_position): A Wyckoff position object that holds symmetry information. lattice (Lattice): A lattice object that defines the crystal structure's unit cell. stype (int): An integer specifying the type of molecule. Default is 0. symbols (list): List of atomic symbols for the atoms in the molecule. numbers (list): List of atomic numbers for the atoms in the molecule. PBC (list): Periodic boundary conditions inherited from the Wyckoff position. radius (float): Radius of the molecule, typically used for collision detection. tols_matrix (numpy array): Tolerance matrix for the molecular structure. Args: mol (pyxtal_molecule): A `pyxtal_molecule` object that describes the molecule. position (list or array): The 3D fractional coordinates of mol_center in the unit cell. orientation (Orientation): The orientation object describing the molecule's rotation. wp (Wyckoff_position): A `Wyckoff_position` object defining the symmetry of the site. lattice (Lattice, optional): The lattice of the crystal. Can be either a Lattice object or a matrix that will be converted into a Lattice object. stype (int, optional): Integer specifying the type of molecule. Default is 0. Methods: _get_dof(): Internal method to calculate the degrees of freedom (DoF) for the molecule. """ def __init__(self, mol, position, orientation, wp, lattice=None, stype=0): # describe the molecule self.molecule = mol self.wp = wp self.position = position # fractional coordinate of molecular center self.orientation = orientation # pyxtal.molecule.orientation object self._get_dof() if isinstance(lattice, Lattice): self.lattice = lattice else: self.lattice = Lattice.from_matrix(lattice) self.PBC = self.wp.PBC # self.mol = mol.mol # A Pymatgen molecule object # [site.specie.value for site in self.mol.sites] self.symbols = mol.symbols self.numbers = self.molecule.mol.atomic_numbers self.tols_matrix = mol.tols_matrix self.radius = mol.radius self.type = stype
[docs] def update_molecule(self, mol): self.molecule = mol self.numbers = mol.mol.atomic_numbers self.symbols = mol.symbols self.tols_matrix = mol.tols_matrix self.radius = mol.radius
[docs] def update_orientation(self, angles): # QZ: Symmetrize the angle to the compatible orientation first self.orientation.r = R.from_euler("zxy", angles, degrees=True) self.orientation.matrix = self.orientation.r.as_matrix()
[docs] def get_min_dist(self, angle=None): """ Compute the minimum interatomic distance within the WP. Returns: minimum distance """ if angle is not None: matrix = self.orientation.change_orientation(angle, update=False) else: matrix = self.orientation.matrix # Get total distances d0, _ = self.get_dists_auto(matrix=matrix) d1, _ = self.get_dists_WP(matrix=matrix, ignore=True) d_total = np.append(d0, d1, axis=0) return d_total.min()
[docs] def optimize_orientation_by_dist(self, ori_attempts=10, verbose=False): """ Optimize the orientation based on the shortest distance """ # Set initial fun value and angle bounds ang_lo, ang_hi = 0, np.pi fun_lo = self.get_min_dist(ang_lo) fun_hi = self.get_min_dist(ang_hi) fun = fun_hi # Refine the orientation using a bisection method for _it in range(ori_attempts): # Return as soon as a good orientation is found if (fun > 0.8) and not self.short_dist(): break # Compute the midpoint angle for bisection ang = (ang_lo + ang_hi) / 2 fun = self.get_min_dist(ang) # Update based on the function value at the midpoint if fun_lo > fun_hi: ang_hi, fun_hi = ang, fun else: ang_lo, fun_lo = ang, fun if verbose: print("optimize_orientation_by_dist", _it, ang, fun) # Final adjustment if fun > fun_hi + 1e-4: self.orientation.change_orientation(ang_hi, update=True) fun = fun_hi elif fun > fun_lo + 1e-4: self.orientation.change_orientation(ang_lo, update=True) fun = fun_lo else: self.orientation.change_orientation(ang, update=True) return fun
[docs] def get_energy(self, angle=None, wps=[], k1=1.0, r1=1.0, k2=2.0, k3=1.0, r2=6.0, req=2.8, r_cut=2.0, verbose=False): """ Compute the virtual energy based on Hbonding and repulsion Args: angle (float): rotation along a rotation axis wps (list): list of wps for consideration """ # Set the orientation and compute the distance if angle is not None: matrix = self.orientation.change_orientation(angle, update=False) else: matrix = self.orientation.matrix coord_ref, _ = self._get_coords_and_species(first=True, unitcell=True, matrix=matrix) coord_ref = coord_ref @ self.lattice.matrix # Get total distances eng = 0 d0, ids_0 = self.get_dists_auto(matrix=matrix, cutoff=8.0) d1, ids_1 = self.get_dists_WP(matrix=matrix, ignore=True, cutoff=8.0) d_total = np.append(d0, d1, axis=0) ids_total = np.append(ids_0, ids_1, axis=0) # initialize ids dicts acceptor_ids = {}; acceptor_ids[self.type] = self.molecule.active_sites[0] donor_ids = {}; donor_ids[self.type] = self.molecule.active_sites[1] H_ids = {}; H_ids[self.type] = self.molecule.active_sites[2] # Extract short distances ([x, y, z, d], [mol1, mol2, atom_id1, atom_id2]) for wp2 in wps: d2, ids_2 = self.get_dists_WP2(wp2, matrix=matrix, ignore=True, cutoff=8.0) if len(d2) > 0: d_total = np.append(d_total, d2, axis=0) ids_total = np.append(ids_total, ids_2, axis=0) if wp2.type not in donor_ids.keys(): acceptor_ids[wp2.type] = wp2.molecule.active_sites[0] donor_ids[wp2.type] = wp2.molecule.active_sites[1] H_ids[wp2.type] = wp2.molecule.active_sites[2] # Count only 1 contribution per acceptor for id1 in self.molecule.active_sites[0]: rA = coord_ref[id1] dAD, angle, dAH = self.get_dist_angle_AD(d_total, ids_total, id1, donor_ids, H_ids, rA) eng += k2 * (dAD-req) ** 2 eng += k3 * (angle-np.pi) ** 2 #print(dAD, dAH, angle) if dAH < r_cut: eng -= k1 * dAH * np.exp(r_cut - dAH) - 1.0 if verbose: print('Hbond AD', id1, dAD, dAH, np.degrees(angle), eng) # Count only 1 contribution per donor for i, id1 in enumerate(self.molecule.active_sites[1]): rD = coord_ref[id1] rH = coord_ref[self.molecule.active_sites[2][i]] dAD, angle, dAH = self.get_dist_angle_DA(d_total, ids_total, id1, acceptor_ids, rD, rH) eng += k2 * (dAD-req) ** 2 eng += k3 * (angle-np.pi) ** 2 if dAH < r_cut: eng -= k1 * dAH * np.exp(r_cut - dAH) - 1.0 #print(dAD, dAH, angle) if verbose: print('Hbond DA', id1, dAD, dAH, np.degrees(angle), eng) # Count repulsion ds = d_total[:, 3] ds = ds[ds < r_cut] eng += k1 * (ds * np.exp(r_cut - ds) - 1.0).sum() #print(ds) if verbose: print('Repulsion', d_total[d_total < r_cut], eng) return eng
[docs] def get_dist_angle_AD(self, d_total, ids_total, A_id, D_ids, H_ids, rA): """ Args: d_total (): c_total (): A_id (int): index of acceptor atom D_ids () """ # Get satisfied rows0 = np.where((ids_total[:, 2]==A_id))[0] rows_D = [] rows_H = [] for row in rows0: m2 = ids_total[row, 1] if ids_total[row, 3] in D_ids[m2]: rows_D.append(row) elif ids_total[row, 3] in H_ids[m2]: rows_H.append(row) if len(rows_D) == 0: return 10.0, 0, 10.0 else: myid = d_total[rows_D][:, 3].argmin() rD = d_total[rows_D][myid, :3] dAD = d_total[rows_D][myid, 3] # Find the shortest distance from H if len(rows_H) == 0: rH = rD + np.array([1, 0, 0]) else: coords_H = d_total[rows_H] myid_H = coords_H[:, 3].argmin() rH = coords_H[myid_H][:3] rHD = rD - rH rHA = rA - rH dHD = np.linalg.norm(rHD) dHA = np.linalg.norm(rHA) if abs(dAD - np.linalg.norm(rD-rA)) > 1e-3: print("bug", dAD, rD, rA, np.linalg.norm(rD-rA)) import sys; sys.exit() #print('debug dHA, dHD', dHA, dHD) cos = rHD @ rHA / (dHD * dHA) angle = np.arccos(np.clip(cos, -1.0, 1.0)) return dAD, angle, dHA
[docs] def get_dist_angle_DA(self, d_total, ids_total, D_id, A_ids, rD, rH): # Get satisfied rows0 = np.where((ids_total[:, 2]==D_id))[0] rows_A = [] for row in rows0: m2 = ids_total[row, 1] if ids_total[row, 3] in A_ids[m2]: rows_A.append(row) if len(rows_A) == 0: return 10.0, 0, 10.0 else: myid = d_total[rows_A][:, 3].argmin() rA = d_total[rows_A][myid, :3] dAD = d_total[rows_A][myid, 3] rHD = rD - rH rHA = rA - rH dHA = np.linalg.norm(rHA) dHD = np.linalg.norm(rHD) d_min = d_total[myid, 3] if abs(dAD - np.linalg.norm(rD-rA)) > 1e-3: print("bug", dAD, rD, rA, np.linalg.norm(rD-rA)) import sys; sys.exit() #print('debug dHA, dHD', dHA, dHD) cos = rHD @ rHA / (dHD * dHA) angle = np.arccos(np.clip(cos, -1.0, 1.0)) return dAD, angle, dHA
[docs] def optimize_orientation_by_energy(self, wps=[], max_ax=20, max_ori=5, early_quit=3.0, verbose=False): """ Iteratively optimize the orientation with the bisection method """ for ax_trial in range(max_ax): # Select axis and compute the initial fun value and angle bounds # Select perpendicular???? self.orientation.set_axis() ang_lo = 0 #self.orientation.angle ang_hi = np.pi #ang_lo + np.pi fun_lo = self.get_energy(wps=wps) #; print("call funlo", fun_lo) fun_hi = self.get_energy(ang_hi, wps=wps) #; print("call funhi", fun_hi) fun = fun_hi #if verbose: print("Init", ang_lo, fun_lo) # Refine the orientation using a bisection method for ori_trial in range(max_ori): # Compute the midpoint angle for bisection ang = (ang_lo + ang_hi) / 2 fun = self.get_energy(ang, wps=wps) # Update based on the function value at the midpoint if fun_lo < fun_hi: ang_hi, fun_hi = ang, fun else: ang_lo, fun_lo = ang, fun #print("debug", ang_lo, ang_hi, fun_lo, fun_hi) # Finally pick the best one adjustment if fun > fun_hi + 1e-4: self.orientation.change_orientation(ang_hi, update=True) fun = fun_hi elif fun > fun_lo + 1e-4: self.orientation.change_orientation(ang_lo, update=True) fun = fun_lo else: self.orientation.change_orientation(ang, update=True) if verbose: print(f'Final {ax_trial:2d} {fun:.2f}') if fun <= early_quit: break
[docs] def cut_lattice(self, ax, cut): """ Cut lattice length on the given direction Args: ax (int): 0, 1, 2 cut (float): the cut """ paras = self.lattice.get_para() x0 = self.position[ax] x0 -= np.floor(x0) if x0 < 0.25: self.position[ax] = paras[ax] * x0 / (paras[ax]-cut) elif 0.25 <= x0 <= 0.75: self.position[ax] = (paras[ax] * x0 - 0.5 * cut) / (paras[ax]-cut) else: self.position[ax] = (paras[ax] * x0 - cut) / (paras[ax]-cut)
#self.lattice.update_para(ax, -cut) def __str__(self): if not hasattr(self.wp, "site_symm"): self.wp.get_site_symmetry() self.angles = self.orientation.r.as_euler("zxy", degrees=True) formula = self.molecule.mol.formula.replace(" ", "") s = "{:12s} @ [{:7.4f} {:7.4f} {:7.4f}] ".format( formula, *self.position) s += f"WP [{self.wp.get_label():s}] " s += "Site [{:}]".format(self.wp.site_symm.replace(" ", "")) if len(self.molecule.mol) > 1: s += " Euler [{:6.1f} {:6.1f} {:6.1f}]".format(*self.angles) return s def __repr__(self): return str(self)
[docs] def _get_dof(self): """ get the number of dof for the given wyckoff site: """ dof = np.linalg.matrix_rank(self.wp.ops[0].rotation_matrix) self.dof = dof + 3 if self.molecule.torsionlist is not None: self.dof += len(self.molecule.torsionlist)
[docs] def get_bounds(self): """ get the number of dof for the given structures: """ self.bounds = [] dof = np.linalg.matrix_rank(self.wp.ops[0].rotation_matrix) for i in range(dof): self.bounds.append([0.0, 1.0]) self.bounds.append([-180.0, 180.0]) self.bounds.append([-90.0, 90.0]) self.bounds.append([-180.0, 180.0]) if self.molecule.torsionlist is not None: for i in range(len(self.molecule.torsionlist)): self.bounds.append([0, 180.0]) return self.bounds
[docs] def save_dict(self): dict0 = { "position": self.position, "wp": self.wp.save_dict(), "molecule": self.molecule.save_str(), "orientation": self.orientation.save_dict(), "lattice": self.lattice.matrix, "lattice_type": self.lattice.ltype, "stype": self.type, } if self.molecule.torsionlist is not None: xyz, _ = self._get_coords_and_species(absolute=True, first=True) dict0["rotors"] = self.molecule.get_torsion_angles(xyz) return dict0
[docs] @classmethod def load_dict(cls, dicts): """ load the sites from a dictionary """ from pyxtal.molecule import Orientation, pyxtal_molecule mol = pyxtal_molecule.load_str(dicts["molecule"]) position = dicts["position"] orientation = Orientation.load_dict(dicts["orientation"]) wp = Wyckoff_position.load_dict(dicts["wp"]) lattice = Lattice.from_matrix( dicts["lattice"], ltype=dicts["lattice_type"]) stype = dicts["stype"] return cls(mol, position, orientation, wp, lattice, stype)
[docs] def encode(self): """ transform dict to 1D vector [wp_id, x, y, z, or1, or2, or3, rotor1, rotor2, .etc] """ if len(self.molecule.mol) > 1: xyz, _ = self._get_coords_and_species(absolute=True, first=True) # if len(xyz)==3: print("encode: \n", self.molecule.mol.cart_coords) rotor = self.molecule.get_torsion_angles(xyz) ori, _, reflect = self.molecule.get_orientation(xyz) return [self.wp.index, *list(self.position), *list(ori), *rotor, reflect] else: return [self.wp.index, *list(self.position), 0]
[docs] def to_1D_dicts(self): """ save the wp in 1D representation """ xyz, _ = self._get_coords_and_species(absolute=True, first=True) dict0 = {"smile": self.molecule.smile} dict0["rotor"] = self.molecule.get_torsion_angles(xyz) dict0["orientation"], dict0["rmsd"], dict0["reflect"] = self.molecule.get_orientation( xyz) dict0["rotor"] # rdkit_mol = self.molecule.rdkit_mol(self.molecule.smile) # conf0 = rdkit_mol.GetConformer(0) # print(self.molecule.set_torsion_angles(conf0, angs)) # print("save matrix"); print(self.orientation.r.as_matrix()) # print("save angle"); print(self.orientation.r.as_euler('zxy', degrees=True)) # print("angle"); print(dict0["orientation"]) # self.molecule.get_center(xyz) dict0["center"] = self.position - np.floor(self.position) dict0["number"] = self.wp.number dict0["index"] = self.wp.index dict0["PBC"] = self.wp.PBC dict0["dim"] = self.wp.dim dict0["lattice"] = self.lattice.matrix dict0["lattice_type"] = self.lattice.ltype return dict0
[docs] @classmethod def from_1D_dicts(cls, dicts): from pyxtal.molecule import Orientation, pyxtal_molecule mol = pyxtal_molecule(mol=dicts["smile"] + ".smi", fix=True) if len(mol.mol) > 1: if len(dicts["smile"]) > 1: conf = mol.rdkit_mol().GetConformer(0) if dicts["reflect"]: mol.set_torsion_angles(conf, dicts["rotor"], False) xyz = mol.set_torsion_angles( conf, dicts["rotor"], dicts["reflect"]) else: # for H2O, use the standard one xyz = np.array( [ [-0.00111384, 0.36313718, 0.0], [-0.82498189, -0.18196256, 0.0], [0.82609573, -0.18117463, 0.0], ] ) mol.reset_positions(xyz) matrix = R.from_euler( "zxy", dicts["orientation"], degrees=True).as_matrix() orientation = Orientation(matrix) else: orientation = Orientation(np.eye(3)) g = dicts["hn"] index = int(dicts["index"]) dim = dicts["dim"] wp = Wyckoff_position.from_group_and_index(g, index, dim, dicts["PBC"]) lattice = Lattice.from_matrix( dicts["lattice"], ltype=dicts["lattice_type"]) # np.dot(dicts["center"], lattice.inv_matrix) position = dicts["center"] position, wp, _ = wp.merge(position, lattice.matrix, 0.01) return cls(mol, position, orientation, wp, lattice)
[docs] def show(self, id=None, **kwargs): """ display WP on the notebook """ from pyxtal.viz import display_molecular_site return display_molecular_site(self, id, **kwargs)
def _get_coords_and_species(self, absolute=False, PBC=False, first=False, unitcell=False, matrix=None): """ Used to generate coords and species for get_coords_and_species Args: absolute: return absolute or relative coordinates PBC: whether or not to add coordinates in neighboring unit cells, first: whether or not to extract the information from only the first site unitcell: whether or not to move the molecular center to the unit cell matrix: orientatin matrix Returns: atomic coords: a numpy array of atomic coordinates in the site species: a list of atomic species for the atomic coords """ if matrix is None: matrix = self.orientation.matrix coord0 = self.molecule.mol.cart_coords.dot(matrix.T) wp_atomic_sites = [] wp_atomic_coords = None for point_index, op2 in enumerate(self.wp.ops): # Obtain the center in absolute coords center_relative = op2.operate(self.position) if unitcell: center_relative -= np.floor(center_relative) center_absolute = np.dot(center_relative, self.lattice.matrix) # Rotate the molecule (Euclidean metric) # op2_m = self.wp.generators_m[point_index] op2_m = self.wp.get_euclidean_generator( self.lattice.matrix, point_index) rot = op2_m.affine_matrix[:3, :3].T # NOTE=====the euclidean_generator has wrong translation vectors, # but we don't care. This needs to be fixed later tmp = np.dot(coord0, rot) # + tau # Add absolute center to molecule tmp += center_absolute tmp = tmp.dot(self.lattice.inv_matrix) wp_atomic_coords = tmp if wp_atomic_coords is None else np.append( wp_atomic_coords, tmp, axis=0) wp_atomic_sites.extend(self.symbols) if first: break if PBC: # Filter PBC of wp_atomic_coords wp_atomic_coords = filtered_coords(wp_atomic_coords, PBC=self.PBC) # Add PBC copies of coords m = create_matrix(PBC=self.PBC, omit=True) # Move [0,0,0] PBC vector to first position in array m2 = [[0, 0, 0], *list(m)] new_coords = np.vstack([wp_atomic_coords + v for v in m2]) wp_atomic_coords = new_coords if absolute: wp_atomic_coords = wp_atomic_coords.dot(self.lattice.matrix) return wp_atomic_coords, wp_atomic_sites
[docs] def get_coords_and_species(self, absolute=False, PBC=False, unitcell=False): """ Lazily generates and returns the atomic coordinate and species for the Wyckoff position. Plugs the molecule into the provided orientation (with angle=0), and calculates the new positions. Args: absolute: return absolute or relative coordinates PBC: whether or not to add coordinates in neighboring unit cells unitcell: whether or not to move the molecule center to the unit cell Returns: coords: a np array of 3-vectors. species: a list of atomic symbols, e.g. ['H', 'H', 'O', 'H', 'H', 'O'] """ return self._get_coords_and_species(absolute, PBC, unitcell=unitcell)
[docs] def perturbate(self, lattice, trans=0.1, rot=5): """ Random perturbation of the molecular site Args: lattice: lattice vectors trans: magnitude of tranlation vectors (default: 0.1 A) rot: magnitude of rotation degree (default: 5.0) """ dis = (np.random.sample(3) - 0.5).dot(lattice) dis /= np.linalg.norm(dis) dis *= trans self.translate(dis, True) if rot == "random": self.orientation.change_orientation() else: self.orientation.change_orientation(angle=rot / 180 * np.pi)
[docs] def translate(self, disp=np.zeros(3), absolute=False): """ To translate the molecule """ disp = np.array(disp) if absolute: disp = disp.dot(self.lattice.inv_matrix) position = self.position + disp self.position = self.wp.project(position)
[docs] def rotate(self, ax_id=0, ax_vector=None, angle=180): """ To rotate the molecule Args: ax_id: the principle axis id ax_vector (float): 3-vector to define the axis angle (float): angle to rotate """ p = self.orientation.r if ax_vector is not None: ax = ax_vector / np.linalg.norm(ax_vector) else: xyz = self.molecule.mol.cart_coords.dot(p.as_matrix().T) ax = self.molecule.get_principle_axes(xyz).T[ax_id] q = R.from_rotvec(ax * rad * angle) o = q * p self.orientation.r = o self.orientation.matrix = o.as_matrix()
# def is_compatible_symmetry(self, tol=0.3): # """ # Check if the molecular symmetry matches the site symmetry # """ # mol = self.molecule.mol # if len(mol) == 1 or self.wp.index==0: # return True # else: # pga = PointGroupAnalyzer(mol, tol) # for op in self.wp.symmetry_m[0]: # if not pga.is_valid_op(op): # return False # return True
[docs] def is_valid_orientation(self): pass
[docs] def get_mol_object(self, id=0): """ make the pymatgen molecule object Args: id: the index of molecules in the given site Returns: a molecule object """ coord0 = self.molecule.mol.cart_coords coord0 = coord0 @ self.orientation.matrix.T # Obtain the center in absolute coords if not hasattr(self.wp, "generators"): self.wp.set_generators() if id <= len(self.wp.generators): # op = self.wp.generators[id] op = self.wp.get_euclidean_generator(self.lattice.matrix, id) center_relative = op.operate(self.position) center_relative -= np.floor(center_relative) center_absolute = np.dot(center_relative, self.lattice.matrix) # Rotate the molecule (Euclidean metric) # op_m = self.wp.generators_m[id] # rot = op_m.affine_matrix[0:3][:, 0:3].T # tau = op_m.affine_matrix[0:3][:, 3] op0 = self.wp.get_euclidean_generator(self.lattice.matrix, id) rot = op0.rotation_matrix.T tmp = np.dot(coord0, rot) # Add absolute center to molecule tmp += center_absolute return Molecule(self.symbols, tmp) else: raise ValueError("id is greater than the number of molecules")
[docs] def show_molecule_in_box(self, id=0): """ display molecule with box Args: id (int): molecular id """ from pyxtal.viz import display_molecule mol = self.get_mol_object(id) cell, vertices, center = self.molecule.get_box_coordinates( mol.cart_coords) return display_molecule(mol, center, cell)
[docs] def update(self, coords=None, lattice=None, absolute=False, update_mol=True): """ After the geometry relaxation, the returned atomic coordinates maybe rescaled to [0, 1] bound. In this case, we need to refind the molecular coordinates according to the original neighbor list. If the list does not change, we return the new coordinates otherwise, terminate the calculation. Args: coords (float): input xyz coordinates for the given molecule absolute (bool): whether the input is absolute coordinates update_mol (bool): whether update the molecule (used for substitution) """ from pyxtal.molecule import Orientation, compare_mol_connectivity try: from openbabel import openbabel, pybel except: import openbabel import pybel if lattice is not None: self.lattice = lattice if coords is None: coords, _ = self._get_coords_and_species( absolute=False, first=True, unitcell=True) absolute = False if not absolute: coords = coords.dot(self.lattice.matrix) # mol = Molecule(self.symbols, coords-np.mean(coords, axis=0)) center = self.molecule.get_center(coords) mol = Molecule(self.symbols, coords - center) # match, _ = compare_mol_connectivity(mol, self.mol, True) # Update the orientation matrix match, _ = compare_mol_connectivity(mol, self.molecule.mol) if match: # position = np.mean(coords, axis=0).dot(self.lattice.inv_matrix) position = center.dot(self.lattice.inv_matrix) self.position = position - np.floor(position) if update_mol: self.orientation = Orientation(np.eye(3)) self.molecule.mol = mol else: m1 = pybel.readstring("xyz", self.molecule.mol.to("xyz")) m2 = pybel.readstring("xyz", mol.to("xyz")) aligner = openbabel.OBAlign(True, False) aligner.SetRefMol(m1.OBMol) aligner.SetTargetMol(m2.OBMol) if aligner.Align(): print("RMSD: ", aligner.GetRMSD()) rot = np.zeros([3, 3]) for i in range(3): for j in range(3): rot[i, j] = aligner.GetRotMatrix().Get(i, j) if abs(np.linalg.det(rot) - 1) < 1e-2: self.orientation.matrix = rot self.orientation.r = R.from_matrix(rot) else: raise ValueError("rotation matrix is wrong") else: import pickle with open("wrong.pkl", "wb") as f: pickle.dump([mol, self.molecule.mol], f) mol.to(filename="Wrong.xyz", fmt="xyz") self.molecule.mol.to(filename="Ref.xyz", fmt="xyz") raise ValueError("molecular connectivity changes! Exit")
# todo check if connectivty changed def _create_matrix(self, center=False, ignore=False): """ Used for calculating distances in lattices with periodic boundary conditions. When multiplied with a set of points, generates additional points in cells adjacent to and diagonal to the original cell Args: center: ignore: Returns: A numpy array of matrices which can be multiplied by a set of coordinates """ abc = [self.lattice.a, self.lattice.b, self.lattice.c] # QZ: This should be based on the occupation of current molecule if hasattr(self, "ijk_lists"): ijk_lists = self.ijk_lists else: def get_ijk_range(pbc, abc_val, ignore, radius): if not pbc: return [0] if not ignore and abc_val > 50.0 and radius < 10: return [0] if abc_val < 8.5: return list(range(-3, 4)) return [-1, 0, 1] ijk_lists = [get_ijk_range( self.PBC[idx], abc[idx], ignore, self.radius) for idx in range(3)] matrix = [[0, 0, 0]] if center else [] matrix += [ [i, j, k] for i in ijk_lists[0] for j in ijk_lists[1] for k in ijk_lists[2] if [i, j, k] != [0, 0, 0] ] # In case a,b,c are all greater than 20 if len(matrix) == 0: matrix = [[1, 0, 0]] return np.array(matrix, dtype=float)
[docs] def get_distances(self, coord1, coord2, m2=None, center=True, ignore=False): """ Compute the distance matrix between the central molecule (coord1) and neighboring molecules (coord2) under the periodic boundary condition. Args: coord1 (numpy array): Fractional coordinates of the central molecule. Shape: (m1, 3), where m1 is the number of atoms coord2 (numpy array): Fractional coordinates of the neighboring molecules. Shape: (N2*m2, 3), where N2 is the number of atoms and m2 is the number of atoms in each neighboring molecule. m2 (int, optional): N_atoms in each neighboring molecule. If not provided, it's assumed to be equal m1. center (bool, optional): If `True`, count self-image of the reference molecule ignore (bool, optional): If `True`, ignores some periodic boundary conditions. Returns: distance matrix: [m1*m2*pbc, m1, m2] coord2 under PBC: [pbc, m2, 3] """ m1 = len(coord1) if m2 is None: m2 = m1 N2 = int(len(coord2) / m2) # Number of molecule 2 # peridoic images m = self._create_matrix(center, ignore) # PBC matrix coord2 = np.vstack([coord2 + v for v in m]) N = N2 * len(m) # Number of PBC images # absolute xyz coord1 = coord1 @ self.lattice.matrix coord2 = coord2 @ self.lattice.matrix d = cdist(coord1, coord2) d = d.reshape(m1, N, m2).transpose(1, 0, 2) coord2 = coord2.reshape([N, m2, 3]) return d, coord2
[docs] def get_dists_auto(self, matrix=None, ignore=False, cutoff=None): """ Compute the distances between the periodic images N: number of atoms in the molecule M: Args: ignore (bool, optional): If `True`, ignores some periodic boundary conditions. cutoff (): if not None, reduce the distance matrix Returns: a distance matrix (M, N, N) list of molecular xyz (M, N, 3) """ coord1, _ = self._get_coords_and_species(first=True, unitcell=True, matrix=matrix) ds, coords = self.get_distances(coord1, coord1, center=False, ignore=ignore) if cutoff is None: return ds, coords else: return self.extract_short_distances(ds, coords, cutoff, self.type, self.type)
[docs] def extract_short_distances(self, ds, coords, cutoff, label1, label2): indices = np.where( ds < cutoff ) d1s = np.zeros((len(indices[0]), 4)) ids = np.zeros((len(indices[0]), 4), dtype=int) for i in range(len(indices[0])): m, n1, n2 = indices[0][i], indices[1][i], indices[2][i] d1s[i, :3] = coords[m, n2, :] d1s[i, 3] = ds[m, n1, n2] ids[i] = [label1, label2, n1, n2] return d1s, ids
[docs] def get_dists_WP(self, matrix=None, ignore=False, idx=None, cutoff=None): """ Compute the distances within the WP site Returns: a distance matrix (M, N, N) list of molecular xyz (M, N, 3) """ m_length = len(self.symbols) coords, _ = self._get_coords_and_species(unitcell=True, matrix=matrix) coord1 = coords[:m_length] # 1st molecular coords if idx is None: coord2 = coords[m_length:] else: coord2 = coords[m_length *(idx): m_length * (idx + 1)] ds, coords = self.get_distances(coord1, coord2, ignore=ignore) if cutoff is None: return ds, coords else: return self.extract_short_distances(ds, coords, cutoff, self.type, self.type)
[docs] def get_dists_WP2(self, wp2, matrix=None, ignore=False, cutoff=None): """ Compute the distances w.r.t to other WP site Returns: a distance matrix (M, N, N) list of molecular xyz (M, N, 3) """ coord1, _ = self._get_coords_and_species(first=True, unitcell=True, matrix=matrix) coord2, _ = wp2._get_coords_and_species(unitcell=True) ds, coords = self.get_distances(coord1, coord2, len(wp2.numbers), ignore=ignore) if cutoff is None: return ds, coords else: return self.extract_short_distances(ds, coords, cutoff, self.type, wp2.type)
[docs] def short_dist(self): """ Check if the atoms are too close within the WP. Returns: True or False """ tols_matrix = self.tols_matrix # Check periodic images d, _ = self.get_dists_auto() if np.min(d) < np.max(tols_matrix): tols = np.min(d, axis=0) if (tols < tols_matrix).any(): return True if self.wp.multiplicity > 1: d, _ = self.get_dists_WP() if np.min(d) < np.max(tols_matrix): tols = np.min(d, axis=0) # N*N matrix if (tols < tols_matrix).any(): return True return False
[docs] def short_dist_with_wp2(self, wp2, tm=Tol_matrix(prototype="molecular")): """ Check whether or not the molecules of two wp sites overlap. Uses ellipsoid overlapping approximation to check. Args: wp2: the 2nd wp sites tm: a Tol_matrix object (or prototype string) for distance checking Returns: True or False """ # Get coordinates for both mol_sites c1, _ = self.get_coords_and_species() c2, _ = wp2.get_coords_and_species() m_length1 = len(self.numbers) m_length2 = len(wp2.numbers) # choose wp with bigger molecule as the center if len(c2) <= len(c1): coord1 = c1[:m_length1] coord2 = c2 # rest molecular coords tols_matrix = self.molecule.get_tols_matrix(wp2.molecule, tm) m2 = m_length2 else: coord1 = c2[:m_length2] coord2 = c1 tols_matrix = wp2.molecule.get_tols_matrix(self.molecule, tm) m2 = m_length1 # compute the distance matrix d, _ = self.get_distances( coord1 - np.floor(coord1), coord2 - np.floor(coord2), m2) # print("short dist", len(c1), len(c2), d.min()) if np.min(d) < np.max(tols_matrix): tols = np.min(d, axis=0) if (tols < tols_matrix).any(): return False return True
[docs] def get_neighbors_auto(self, factor=1.1, max_d=4.0, ignore_E=True, detail=False, etol=-5e-2): """ Find neighboring molecules within a given distance threshold. The function identifies neighboring molecules within PBC and computes the shortest distances and (optionally) interaction energies. it returns detailed information about neighboring molecule pairs, distances, and energies. Args: factor (float, optional): Scaling factor for distance (default is 1.1). max_d (float, optional): Maximum distance for neighbors (default is 4.0 Å). ignore_E (bool, optional): Skips energy calculations (default is `True`). detail (bool, optional): Returns detailed eng, molecular pairs and distances instead of only shortest distances. etol (float, optional): Energy tolerance for filtering pairs in detailed mode (default is -5e-2). Returns: If `detail is True`: engs (list): List of interaction energies for valid molecular pairs. pairs (list): List of tuples with neighbor molecules and positions. dists (list): List of distances between neighboring molecular pairs. If `detail is False`: min_ds (list): List of shortest distances between central and neighbors. neighs (list): List of neighboring molecular coordinates with PBC. Ps (list): List of Wyckoff position multiplicities or translations. engs (list): List of energies, if energy calculation is not skipped. """ # Compute the mol_center in Cartesian coordinate position = self.position - np.floor(self.position) mol_center = np.dot(position, self.lattice.matrix) # Atomic numbers for atoms in the central molecule numbers = self.molecule.mol.atomic_numbers # Get fractional coordinates for the central molecule coord1 = self._get_coords_and_species(first=True, unitcell=True)[0] # Initialize tolerance matrix for intermolecular distances tm = Tol_matrix(prototype="vdW", factor=factor) tols_matrix = self.molecule.get_tols_matrix(tm=tm) # Initialize coefficient matrix for energy calculations if needed coef_matrix = None if not ignore_E: coef_matrix = self.molecule.get_coefs_matrix() if coef_matrix is not None: A = coef_matrix[:, :, 0] B = coef_matrix[:, :, 1] C = coef_matrix[:, :, 2] # Initialize lists for results min_ds = [] neighs = [] Ps = [] engs = [] pairs = [] dists = [] # Find neighbors under PBC d, coord2 = self.get_dists_auto(ignore=True) # Loop through each neighboring molecule for i in range(d.shape[0]): if np.min(d[i]) < max_d and (d[i] < tols_matrix).any(): if coef_matrix is not None: if detail: eng = A * np.exp(-B * d[i]) - C / (d[i] ** 6) ids = np.where(eng < etol) for id in range(len(ids[0])): n1, n2 = numbers[ids[0][id]], numbers[ids[1][id]] if 1 not in [n1, n2]: pos = coord2[i][ids[1][id]] - mol_center pairs.append((n2, pos)) engs.append(eng[ids[0][id], ids[1][id]]) dists.append(d[i][ids[0][id], ids[1][id]]) else: eng0 = A * np.exp(-B * d[i]) - C / (d[i] ** 6) engs.append(eng0.sum()) else: engs.append(None) if detail: ids = np.where(d[i] < max_d) for id in range(len(ids[0])): n1, n2 = numbers[ids[0][id]], numbers[ids[1][id]] if 1 not in [n1, n2]: pos = coord2[i][ids[1][id]] - mol_center pairs.append((n2, pos)) dists.append(np.linalg.norm(pos)) tmp = d[i] / tols_matrix _d = tmp[tmp < 1.0] id = np.argmin(tmp.flatten()) d[i].flatten()[id] min_ds.append(min(_d) * factor) neighs.append(coord2[i]) Ps.append(0) # Handle Wyckoff position multiplicities (if applicable) if self.wp.multiplicity > 1: for idx in range(1, self.wp.multiplicity): P = 0 if self.wp.is_pure_translation(idx) else 1 d, coord2 = self.get_dists_WP(ignore=True, idx=idx) for i in range(d.shape[0]): if np.min(d[i]) < max_d and (d[i] < tols_matrix).any(): if coef_matrix is not None: if detail: eng = A * np.exp(-B * d[i]) - C / (d[i] ** 6) ids = np.where(eng < etol) for id in range(len(ids[0])): n1, n2 = numbers[ids[0][id] ], numbers[ids[1][id]] if 1 not in [n1, n2]: pos = coord2[i][ids[1] [id]] - mol_center pairs.append((n2, pos)) engs.append( eng[ids[0][id], ids[1][id]]) dists.append( d[i][ids[0][id], ids[1][id]]) else: eng0 = A * np.exp(-B * d[i]) - C / (d[i] ** 6) engs.append(eng0.sum()) else: engs.append(None) if detail: # print('OMMMM', d[i].min()) ids = np.where(d[i] < max_d) # for id in zip(*ids): for id in range(len(ids[0])): # zip(*ids): n1, n2 = numbers[ids[0][id] ], numbers[ids[1][id]] if 1 not in [n1, n2]: # != [1, 1]: pos = coord2[i][ids[1] [id]] - mol_center pairs.append((n2, pos)) dists.append(np.linalg.norm(pos)) tmp = d[i] / tols_matrix _d = tmp[tmp < 1] id = np.argmin(tmp.flatten()) d[i].flatten()[id] min_ds.append(min(_d) * factor) neighs.append(coord2[i]) Ps.append(P) # Return results based on the detail flag if detail: return engs, pairs, dists else: return min_ds, neighs, Ps, engs
[docs] def get_neighbors_wp2(self, wp2, factor=1.1, max_d=4.0, ignore_E=True, detail=False, etol=-5e-2): """ Find the neigboring molecules from a 2nd wp site Returns min_ds: list of shortest distances neighs: list of neighboring molecular xyzs """ tm = Tol_matrix(prototype="vdW", factor=factor) m_length1 = len(self.numbers) m_length2 = len(wp2.numbers) # Get coordinates for both mol_sites c1, _ = self.get_coords_and_species() c2, _ = wp2.get_coords_and_species() coord1 = c1[:m_length1] coord2 = c2 # rest molecular coords tols_matrix = self.molecule.get_tols_matrix(wp2.molecule, tm) coef_matrix = None if not ignore_E: coef_matrix = self.molecule.get_coefs_matrix(wp2.molecule) if coef_matrix is not None: A = coef_matrix[:, :, 0] B = coef_matrix[:, :, 1] C = coef_matrix[:, :, 2] # compute the distance matrix d, coord2 = self.get_distances(coord1, coord2, m_length2, ignore=True) min_ds = [] neighs = [] engs = [] dists = [] pairs = [] for i in range(d.shape[0]): if np.min(d[i]) < max_d and (d[i] < tols_matrix).any(): if coef_matrix is not None: if detail: eng = A * np.exp(-B * d[i]) - C / (d[i] ** 6) ids = np.where(eng < etol) for id in zip(*ids): tmp1, tmp2 = coord1[id[0]], coord2[i][id[1]] pairs.append((tmp1 + tmp2) / 2) engs.append(eng[id]) dists.append(d[i][id]) else: eng0 = A * np.exp(-B * d[i]) - C / (d[i] ** 6) engs.append(eng0.sum()) else: engs.append(None) tmp = d[i] / tols_matrix _d = tmp[tmp < 1] id = np.argmin(tmp.flatten()) d[i].flatten()[id] min_ds.append(min(_d) * factor) neighs.append(coord2[i]) if detail: return engs, pairs, dists else: return min_ds, neighs, engs
[docs] def get_ijk_lists(self, value=None): """ Get the occupatation in the unit cell for the generating molecule This can be used to estimate the supercell size for finding neighbors Returns PBC """ # Get coordinates for both mol_sites if value is None: ijk_lists = [] c1, _ = self.get_coords_and_species(absolute=False) for id in range(3): if self.PBC[id]: m1 = np.min(c1[:, id]) m2 = np.max(c1[:, id]) max_id = int(np.ceil(2 * m2 - m1)) min_id = int(np.floor(-m2)) ijk_lists.append(list(range(min_id - 1, max_id + 1))) else: ijk_lists.append([0]) self.ijk_lists = ijk_lists else: self.ijk_lists = value
[docs] def to_atom_site(self, specie=1): """ transform it to the mol_sites, i.e., to build a molecule on the current WP """ dicts = {} dicts["specie"] = specie dicts["position"] = self.position dicts["hn"] = self.wp.hall_number dicts["index"] = self.wp.index return atom_site.load_dict(dicts)
if __name__ == "__main__": from pyxtal.symmetry import Wyckoff_position as WP wp = WP.from_group_and_letter(225, 'a') coordinate = [0.25, 0.25, 0.25] specie = 6 atom_site_instance = atom_site(wp=wp, coordinate=coordinate, specie=specie) # Print the created instance print(atom_site_instance)