# Standard Libraries
from __future__ import annotations
import numpy as np
from numpy.random import Generator
# PyXtal imports
from pyxtal.constants import deg, ltype_keywords, rad
from pyxtal.msg import VolumeError
from pyxtal.operations import angle, create_matrix
[docs]
class Lattice:
"""
Class for storing and generating crystal lattices. Allows for
specification of constraint values. Lattice types include triclinic,
monoclinic, orthorhombic, tetragonal, trigonal, hexagonal, cubic,
spherical, and ellipsoidal. The last two are used for generating point
group structures, and do not actually represent a parallelepiped lattice.
Args:
ltype: a string representing the type of lattice (from the above list)
volume: the volume, in Angstroms cubed, of the lattice
matrix: matrix in 3*3 form
PBC: A periodic boundary condition list, where 1 is periodic,
Ex: [1, 1, 1] -> 3d periodicity, [0, 0, 1] -> periodic at z axis
kwargs: various values which may be defined. If none are defined,
random ones will be generated. Values will be passed to
generate_lattice. Options include:
'area': The cross-sectional area (in Ang^2). Only for 1D crystals
'thickness': The cell's thickness (in Angstroms) for 2D crystals
'unique_axis': The unique axis for certain symmetry (and especially
layer) groups. Because the symmetry operations are not also
transformed, you should use the default values for random
crystal generation
'random': If False, keeps the stored values for the lattice geometry
even upon applying reset_matrix. To alter the matrix, use
set_matrix() or set_para
'unique_axis': the axis ('a', 'b', or 'c') which is not symmetrically
equivalent to the other two
'min_l': the smallest allowed cell vector. The smallest vector must
be larger than this.
'mid_l': the second smallest allowed cell vector. The second
smallest vector must be larger than this.
'max_l': the third smallest allowed cell vector. The largest cell
vector must be larger than this.
'allow_volume_reset': a bool stating whether or not the volume
should be reset during each crystal generation attempt
"""
def __init__(
self, ltype, volume=None, matrix=None, PBC=None, random_state: int | None | Generator = None, **kwargs
):
# Set required parameters
if PBC is None:
PBC = [1, 1, 1]
if ltype in ltype_keywords:
self.ltype = ltype.lower()
elif ltype is None:
self.ltype = "triclinic"
else:
msg = "Invalid lattice type: " + ltype
raise ValueError(msg)
self.volume = float(volume)
self.PBC = PBC
self.dim = sum(PBC)
self.kwargs = {}
self.random = True
if isinstance(random_state, Generator):
self.random_state = random_state.spawn(1)[0]
else:
self.random_state = np.random.default_rng(random_state)
# Set optional values
self.allow_volume_reset = True
for key, value in kwargs.items():
if key in [
"area",
"thickness",
"unique_axis",
"random",
"min_l",
"mid_l",
"max_l",
"min_special", # min special for mole
]:
setattr(self, key, value)
self.kwargs[key] = value
if key == "allow_volume_reset" and value is False:
self.allow_volume_reset = False
if not hasattr(self, "unique_axis"):
self.unique_axis = "c"
# Set stress normalization info
if self.ltype == "triclinic":
norm_matrix = np.ones([3, 3])
elif self.ltype == "monoclinic":
if self.PBC == [1, 1, 1]:
norm_matrix = np.array([[1, 0, 0], [0, 1, 0], [1, 0, 1]])
else:
if self.unique_axis == "a":
norm_matrix = np.array([[1, 0, 0], [0, 1, 0], [0, 1, 1]])
elif self.unique_axis == "b":
norm_matrix = np.array([[1, 0, 0], [0, 1, 0], [1, 0, 1]])
elif self.unique_axis == "c":
norm_matrix = np.array([[1, 0, 0], [1, 1, 0], [0, 0, 1]])
elif self.ltype in [
"orthorhombic",
"tetragonal",
"trigonal",
"hexagonal",
"cubic",
]:
norm_matrix = np.eye(3)
elif self.ltype in ["spherical", "ellipsoidal"]:
norm_matrix = np.zeros([3, 3])
self.stress_normalization_matrix = norm_matrix
# Set info for on-diagonal stress symmetrization
if self.ltype in ["tetragonal", "trigonal", "hexagonal"]:
self.stress_indices = [(0, 0), (1, 1)]
elif self.ltype in ["cubic"]:
self.stress_indices = [(0, 0), (1, 1), (2, 2)]
else:
self.stress_indices = []
# Set values for the matrix
if matrix is None:
self.reset_matrix()
else:
self.set_matrix(matrix)
# Set tolerance
if self.ltype in ["triclinic"]:
self.a_tol = 15.0
else:
self.a_tol = 9.9
self._get_dof()
def _get_dof(self):
"""
get the number of degree of freedom
"""
if self.ltype in ["triclinic"]:
self.dof = 6
elif self.ltype in ["monoclinic"]:
self.dof = 4
elif self.ltype in ["orthorhombic"]:
self.dof = 3
elif self.ltype in ["tetragonal", "hexagonal", "trigonal"]:
self.dof = 2
else:
self.dof = 1
[docs]
def get_bounds(self, min_vec=2.0, max_vec=50.0, min_ang=30, max_ang=150):
"""
get the number of degree of freedom
"""
if self.ltype in ["triclinic"]:
self.bounds = [(min_vec, max_vec), (min_vec, max_vec), (min_vec, max_vec),
(min_ang, max_ang), (min_ang, max_ang), (min_ang, max_ang)]
elif self.ltype in ["monoclinic"]:
self.bounds = [(min_vec, max_vec), (min_vec, max_vec), (min_vec, max_vec),
(min_ang, max_ang)]
elif self.ltype in ["orthorhombic"]:
self.bounds = [(min_vec, max_vec), (min_vec, max_vec), (min_vec, max_vec)]
elif self.ltype in ["tetragonal", "hexagonal", "trigonal"]:
self.bounds = [(min_vec, max_vec), (min_vec, max_vec)]
else:
self.bounds = [(min_vec, max_vec)]
return self.bounds
[docs]
@classmethod
def get_dofs(self, ltype):
"""
get the number of degree of freedom
"""
# if ltype is None: ltype = self.ltype
if ltype in ["triclinic"]:
dofs = [3, 3]
elif ltype in ["monoclinic"]:
dofs = [3, 1]
elif ltype in ["orthorhombic"]:
dofs = [3, 0]
elif ltype in ["tetragonal", "hexagonal", "trigonal"]:
dofs = [2, 0]
else:
dofs = [1, 0]
return dofs
[docs]
def copy(self):
"""
simply copy the structure
"""
from copy import deepcopy
return deepcopy(self)
[docs]
def get_lengths(self):
mat = create_matrix(self.PBC, True)
mat = np.dot(mat, self.matrix)
return mat, np.linalg.norm(mat, axis=1)
[docs]
def scale(self, factor=1.1):
matrix = self.matrix
return Lattice.from_matrix(matrix * factor, ltype=self.ltype)
[docs]
def get_permutation_matrices(self):
"""
Return the possible permutation matrices that donot violate the symmetry
"""
if self.ltype in ["monoclinic"]: # permutation between a and c
return np.array(
[
[[1, 0, 0], [0, 1, 0], [0, 0, 1]], # self
[[0, 0, 1], [0, 1, 0], [1, 0, 0]], # a-c
]
)
elif self.ltype in ["triclinic"]:
return np.array(
[
[[1, 0, 0], [0, 1, 0], [0, 0, 1]], # self
[[1, 0, 0], [0, 0, 1], [0, 1, 0]], # b-c
[[0, 0, 1], [0, 1, 0], [1, 0, 0]], # a-c
[[0, 1, 0], [1, 0, 0], [0, 0, 1]], # a-b
]
)
else:
return [np.eye(3)]
[docs]
def optimize_once(self, reset=False):
"""
Optimize the lattice's inclination angles
"""
opt = False
trans = self.get_transformation_matrices()
if len(trans) > 1:
diffs = []
for tran in trans:
cell_new = np.dot(tran, self.matrix)
try:
lat_new = Lattice.from_matrix(cell_new, ltype=self.ltype)
diffs.append(lat_new.get_worst_angle())
except:
diffs.append(100)
id = np.array(diffs).argmin()
if id > 0 and diffs[id] < diffs[0] - 0.01:
opt = True
tran = trans[id]
cell = np.dot(tran, self.matrix)
lat = Lattice.from_matrix(cell, ltype=self.ltype, reset=reset)
return lat, tran, opt
return self, np.eye(3), opt
[docs]
def get_worst_angle(self):
"""
return the worst inclination angle difference w.r.t 90 degree
"""
return np.max(abs(np.array([self.alpha, self.beta, self.gamma]) - np.pi / 2))
[docs]
def optimize_multi(self, iterations=5):
"""
Optimize the lattice if the cell has a bad inclination angles
Args:
iterations: maximum number of iterations
force: whether or not do the early termination
Returns:
the optimized lattice
"""
lattice = self
trans_matrices = []
for _i in range(iterations):
lattice, trans, opt = lattice.optimize_once(reset=True)
if opt:
trans_matrices.append(trans)
else:
break
return lattice, trans_matrices
[docs]
def standardize(self):
"""
Force the angle to be smaller than 90 degree
"""
change = False
if self.ltype in ["monoclinic"]:
if self.beta > np.pi / 2:
self.beta = np.pi - self.beta
change = True
elif self.ltype in ["triclinic"]:
if self.alpha > np.pi / 2:
self.alpha = np.pi - self.alpha
change = True
if self.beta > np.pi / 2:
self.beta = np.pi - self.beta
change = True
if self.gamma > np.pi / 2:
self.gamma = np.pi - self.gamma
change = True
if change:
para = (self.a, self.b, self.c, self.alpha, self.beta, self.gamma)
self.matrix = para2matrix(para)
[docs]
def encode(self):
a, b, c, alpha, beta, gamma = self.get_para(degree=True)
if self.ltype in ["cubic"]:
return [a]
elif self.ltype in ["hexagonal", "trigonal", "tetragonal"]:
return [a, c]
elif self.ltype in ["orthorhombic"]:
return [a, b, c]
elif self.ltype in ["monoclinic"]:
return [a, b, c, beta]
else:
return [a, b, c, alpha, beta, gamma]
[docs]
@classmethod
def from_1d_representation(self, v, ltype):
# print('test', v, type(v), len(v), v[0])
if ltype == "triclinic":
a, b, c, alpha, beta, gamma = v[0], v[1], v[2], v[3], v[4], v[5]
elif ltype == "monoclinic":
a, b, c, alpha, beta, gamma = v[0], v[1], v[2], 90, v[3], 90
elif ltype == "orthorhombic":
a, b, c, alpha, beta, gamma = v[0], v[1], v[2], 90, 90, 90
elif ltype == "tetragonal":
a, b, c, alpha, beta, gamma = v[0], v[0], v[1], 90, 90, 90
elif ltype in ["trigonal", "hexagonal"]:
a, b, c, alpha, beta, gamma = v[0], v[0], v[1], 90, 90, 120
else:
a, b, c, alpha, beta, gamma = v[0], v[0], v[0], 90, 90, 90
try:
return Lattice.from_para(a, b, c, alpha, beta, gamma, ltype=ltype)
except:
print(a, b, c, alpha, beta, gamma, ltype)
[docs]
def update_from_1d_representation(self, v):
"""
Update the cell para and matrix from the 1d rep
"""
if self.ltype == "triclinic":
self.a, self.b, self.c, self.alpha, self.beta, self.gamma = v[:6]
elif self.ltype == "monoclinic":
self.a, self.b, self.c, self.beta = v[:4]
elif self.ltype == "orthorhombic":
self.a, self.b, self.c = v[:3]
elif self.ltype in ["tetragonal", "trigonal", "hexagonal"]:
self.a, self.b, self.c = v[0], v[0], v[1]
else:
self.a, self.b, self.c = v[0], v[0], v[0]
para = (self.a, self.b, self.c, self.alpha, self.beta, self.gamma)
matrix = para2matrix(para)
if matrix is not None:
self.set_matrix(matrix)
else:
msg = f'error input {v} in update_from_1d_representation {self.ltype}'
raise ValueError(msg)
[docs]
def mutate(self, degree=0.10, frozen=False):
"""
Mutate the lattice object
"""
rand = 1 + degree * (self.random_state.random(6) - 0.5)
a0, b0, c0, alpha0, beta0, gamma0 = self.get_para()
a = a0 * rand[0]
b = b0 * rand[1]
c = c0 * rand[2]
alpha = np.degrees(alpha0 * rand[3])
beta = np.degrees(beta0 * rand[4])
gamma = np.degrees(gamma0 * rand[5])
ltype = self.ltype
if self.ltype in ["cubic"]:
if frozen:
lat = Lattice.from_para(a0, a0, a0, 90, 90, 90, ltype=ltype)
else:
lat = Lattice.from_para(a, a, a, 90, 90, 90, ltype=ltype)
elif ltype in ["hexagonal", "trigonal"]:
if frozen:
lat = Lattice.from_para(a0, a0, c, 90, 90, 120, ltype=ltype)
else:
lat = Lattice.from_para(a, a, c, 90, 90, 120, ltype=ltype)
elif ltype in ["tetragonal"]:
if frozen:
lat = Lattice.from_para(a0, a0, c, 90, 90, 90, ltype=ltype)
else:
lat = Lattice.from_para(a, a, c, 90, 90, 90, ltype=ltype)
elif ltype in ["orthorhombic"]:
lat = Lattice.from_para(a, b, c, 90, 90, 90, ltype=ltype)
elif ltype in ["monoclinic"]:
lat = Lattice.from_para(a, b, c, 90, beta, 90, ltype=ltype)
elif ltype in ["triclinic"]:
lat = Lattice.from_para(a, b, c, alpha, beta, gamma, ltype=ltype)
else:
raise ValueError(f"ltype {ltype:s} is not supported")
return lat
[docs]
def generate_para(self):
if self.dim == 3:
return generate_cellpara(self.ltype, self.volume, random_state=self.random_state, **self.kwargs)
elif self.dim == 2:
return generate_cellpara_2D(self.ltype, self.volume, random_state=self.random_state, **self.kwargs)
elif self.dim == 1:
return generate_cellpara_1D(self.ltype, self.volume, random_state=self.random_state, **self.kwargs)
elif self.dim == 0:
return generate_cellpara_0D(self.ltype, self.volume, random_state=self.random_state, **self.kwargs)
return None
[docs]
def generate_matrix(self):
"""
Generates a 3x3 matrix for a lattice based on the lattice type and volume
"""
# Try multiple times in case of failure
for _i in range(10):
para = self.generate_para()
if para is not None:
return para2matrix(para)
return None
[docs]
def get_matrix(self, shape="upper"):
"""
Returns a 3x3 numpy array representing the lattice vectors.
"""
return self.matrix
[docs]
def get_para(self, degree=False):
"""
Returns a tuple of lattice parameters.
"""
if degree:
return (
self.a,
self.b,
self.c,
deg * self.alpha,
deg * self.beta,
deg * self.gamma,
)
else:
return (self.a, self.b, self.c, self.alpha, self.beta, self.gamma)
[docs]
def set_matrix(self, matrix=None):
if matrix is not None:
m = np.array(matrix)
if np.shape(m) == (3, 3):
self.matrix = m
try:
self.inv_matrix = np.linalg.inv(m)
except:
print(self.para)
print(matrix)
msg = "Error in getting the inv_matrix"
raise ValueError(msg)
else:
print(matrix)
msg = "Error: matrix must be a 3x3 numpy array or list"
raise ValueError(msg)
else:
self.reset_matrix()
para = matrix2para(self.matrix)
self.a, self.b, self.c, self.alpha, self.beta, self.gamma = para
self.volume = np.linalg.det(self.matrix)
[docs]
def set_para(self, para=None, radians=False):
if para is not None:
if radians is False:
para[3] *= rad
para[4] *= rad
para[5] *= rad
self.set_matrix(para2matrix(para))
else:
self.set_matrix()
[docs]
def update_para(self, id, change):
para = [self.a, self.b, self.c, self.alpha, self.beta, self.gamma]
para[id] += change
self.set_matrix(para2matrix(para))
[docs]
def reset_matrix(self, shape="upper"):
if self.random:
success = False
for _i in range(5):
m = self.generate_matrix()
if m is not None:
self.matrix = m
self.inv_matrix = np.linalg.inv(m)
[a, b, c, alpha, beta, gamma] = matrix2para(self.matrix)
self.a = a
self.b = b
self.c = c
self.alpha = alpha
self.beta = beta
self.gamma = gamma
success = True
break
if not success:
msg = "Cannot generate a good matrix"
raise ValueError(msg)
else:
# a small utility to convert the cell shape
para = matrix2para(self.matrix)
self.matrix = para2matrix(para, format=shape)
self.inv_matrix = np.linalg.inv(self.matrix)
[docs]
def set_volume(self, volume):
if self.allow_volume_reset:
self.volume = volume
[docs]
def swap_axis(self, random=False, ids=None):
"""
For the lattice
"""
# only applied to triclinic/monoclinic/orthorhombic
if self.ltype in ["triclinic", "orthorhombic", "Orthorhombic"]:
allowed_ids = [
[0, 1, 2],
[1, 0, 2],
[0, 2, 1],
[2, 1, 0],
[1, 2, 0],
[2, 0, 1],
]
elif self.ltype in ["monoclinic"]:
if abs(self.beta - 90 * rad) > 1e-3:
allowed_ids = [[0, 1, 2], [2, 1, 0]]
else:
allowed_ids = [
[0, 1, 2],
[1, 0, 2],
[0, 2, 1],
[2, 1, 0],
[1, 2, 0],
[2, 0, 1],
]
else:
allowed_ids = [[0, 1, 2]]
if random:
ids = self.random_state.choice(allowed_ids)
else:
if ids not in allowed_ids:
print(ids)
raise ValueError("the above swap is not allowed in " + self.ltype)
(a, b, c, alpha, beta, gamma) = self.get_para()
alpha, beta, gamma = alpha * deg, beta * deg, gamma * deg
if ids is None:
return self
elif ids == [1, 0, 2]: # a->b
return self.from_para(b, a, c, beta, alpha, gamma, self.ltype)
elif ids == [2, 1, 0]: # a->c
return self.from_para(c, b, a, gamma, beta, alpha, self.ltype)
elif ids == [0, 2, 1]: # b-c
return self.from_para(a, c, b, alpha, gamma, beta, self.ltype)
elif ids == [2, 0, 1]:
return self.from_para(c, a, b, gamma, alpha, beta, self.ltype)
elif ids == [1, 2, 0]:
return self.from_para(b, c, a, beta, gamma, alpha, self.ltype)
else:
return self
[docs]
def swap_angle(self, random=True, ids=None):
# only applied to triclinic/monoclinic #/hexagonal
"""
If the angle is not 90. There will be two equivalent versions
e.g., 80 and 100.
"""
if self.ltype in ["monoclinic"]:
allowed_ids = ["beta", "No"]
elif self.ltype in ["triclinic"]:
allowed_ids = ["alpha", "beta", "gamma", "No"]
else:
allowed_ids = ["No"]
if random:
ids = self.random_state.choice(allowed_ids)
else:
if ids not in allowed_ids:
print(ids)
raise ValueError("the above swap is not allowed in " + self.ltype)
(a, b, c, alpha, beta, gamma) = self.get_para()
alpha, beta, gamma = alpha * deg, beta * deg, gamma * deg
if ids is None:
return self
elif ids == "alpha":
return self.from_para(a, b, c, 180 - alpha, beta, gamma, self.ltype)
elif ids == "beta":
return self.from_para(a, b, c, alpha, 180 - beta, gamma, self.ltype)
elif ids == "gamma":
return self.from_para(a, b, c, alpha, beta, 180 - gamma, self.ltype)
else:
return self
[docs]
def add_vacuum(self, coor, frac=True, vacuum=15, PBC=None):
"""
Adds space above and below a 2D or 1D crystal.
Args:
coor: the relative coordinates of the crystal
vacuum: the amount of space, in Angstroms, to add above and below
PBC: A periodic boundary condition list,
Ex: [1,1,1] -> full 3d periodicity, [0,0,1] -> periodicity
along the z axis
Returns:
The transformed lattice and coordinates after the vacuum is added
"""
if PBC is None:
PBC = [0, 0, 0]
matrix = self.matrix
absolute_coords = np.dot(coor, matrix) if frac else coor
for i, a in enumerate(PBC):
if not a:
ratio = 1 + vacuum / np.linalg.norm(matrix[i])
matrix[i] *= ratio
absolute_coords[:, i] += vacuum / 2
coor = np.dot(absolute_coords, np.linalg.inv(matrix)) if frac else absolute_coords
return matrix, coor
[docs]
def generate_point(self):
if self.ltype in ["spherical", "ellipsoidal"]:
# Choose a point within an octant of the unit sphere using Marsaglia's method
# Generate 3D vector from normal distribution
vec = self.random_state.normal(0, 1, 3)
# Generate random radius
r = self.random_state.random() ** (1 / 3)
# Normalize and scale
point = r * vec / np.linalg.norm(vec)
else:
point = self.random_state.random(3)
for i, a in enumerate(self.PBC):
if not a:
if self.ltype in ["hexagonal", "trigonal"]:
point[i] *= 1.0 / np.sqrt(3.0)
else:
point[i] -= 0.5
return point
[docs]
@classmethod
def from_para(
self,
a,
b,
c,
alpha,
beta,
gamma,
ltype="triclinic",
radians=False,
PBC=None,
factor=1.0,
force_symmetry=False,
**kwargs,
):
"""
Creates a Lattice object from 6 lattice parameters. Additional keyword
arguments are available. Unless specified by the keyword random=True,
does not create a new matrix upon calling reset_matrix. This allows
for generation of random crystals with a specific choice of unit cell.
Args:
a: The length (in Angstroms) of the unit cell vectors
b: The length (in Angstroms) of the unit cell vectors
c: The length (in Angstroms) of the unit cell vectors
alpha: the angle (in degrees) between the b and c vectors
beta: the angle (in degrees) between the a and c vectors
gamma: the angle (in degrees) between the a and b vectors
ltype: the lattice type ("cubic, tetragonal, etc."). Also available
are "spherical", which confines generated points to lie within a
sphere, and "ellipsoidal", which confines generated points to lie
within an ellipse (oriented about the z axis)
radians: whether or not to use radians (instead of degrees) for the
lattice angles
PBC: A periodic boundary condition list, where 1 means periodic,
0 means not periodic.
Ex: [1,1,1] -> full 3d periodicity, [0,0,1] -> periodicity along
the z axis
kwargs: various values which may be defined. If none are defined,
random ones will be generated. Values will be passed to
generate_lattice. Options include:
area: The cross-sectional area (in Angstroms squared). Only used
to generate 1D crystals
thickness: The unit cell's non-periodic thickness (in Angstroms).
Only used to generate 2D crystals
unique_axis: The unique axis for certain symmetry (and especially
layer) groups. Because the symmetry operations are not also
transformed, you should use the default values for random
crystal generation
random: If False, keeps the stored values for the lattice geometry
even upon applying reset_matrix. To alter the matrix,
use set_matrix() or set_para
'unique_axis': the axis ('a', 'b', or 'c') which is unique
'min_l': the smallest allowed cell vector.
'mid_l': the second smallest allowed cell vector.
'max_l': the third smallest allowed cell vector.
Returns:
a Lattice object with the specified parameters
"""
if PBC is None:
PBC = [1, 1, 1]
try:
cell_matrix = para2matrix((a, b, c, alpha, beta, gamma), radians=radians)
cell_matrix *= factor
except Exception as err:
msg = "Error: invalid cell parameters for lattice."
raise ValueError(msg) from err
if force_symmetry:
return Lattice.from_matrix(cell_matrix, ltype=ltype)
else:
volume = np.linalg.det(cell_matrix)
# Initialize a Lattice instance
l = Lattice(ltype, volume, PBC=PBC, **kwargs)
l.a, l.b, l.c = factor * a, factor * b, factor * c
l.alpha, l.beta, l.gamma = alpha * rad, beta * rad, gamma * rad
l.matrix = cell_matrix
l.inv_matrix = np.linalg.inv(cell_matrix)
l.ltype = ltype
l.volume = volume
l.random = False
l.allow_volume_reset = False
return l
[docs]
@classmethod
def from_matrix(
self,
matrix,
reset=True,
shape="upper",
ltype="triclinic",
PBC=None,
**kwargs,
):
"""
Creates a Lattice object from a 3x3 cell matrix. Additional keywords
are available. Unless specified by the keyword random=True, does not
create a new matrix upon calling reset_matrix. This allows for a random
crystals with a specific choice of unit cell.
Args:
matrix: a 3x3 real matrix (numpy array or nested list) for the cell
ltype: the lattice type ("cubic, tetragonal, etc."). Also can be
- "spherical", confines points to lie within a sphere,
- "ellipsoidal", points to lie within an ellipsoid (about z axis)
PBC: A periodic boundary condition list, where 1 is periodic
Ex: [1,1,1] -> full 3d periodicity, [0,0,1] -> periodicity at z.
kwargs: various values which may be defined. Random ones if None
Values will be passed to generate_lattice. Options include:
`area: The cross-sectional area (in Ang^2) for 1D crystals
`thickness`: The cell's thickness (in Ang) for 2D crystals
`unique_axis`: The unique axis for layer groups.
`random`: If False, keeps the stored values for the lattice
geometry even applying reset_matrix. To alter the matrix,
use `set_matrix()` or `set_para`
'unique_axis': the axis ('a', 'b', or 'c') which is unique.
'min_l': the smallest allowed cell vector.
'mid_l': the second smallest allowed cell vector.
'max_l': the third smallest allowed cell vector.
Returns:
a Lattice object with the specified parameters
"""
if PBC is None:
PBC = [1, 1, 1]
m = np.array(matrix)
if np.shape(m) != (3, 3):
print(matrix)
msg = "Error: matrix must be a 3x3 numpy array or list"
raise ValueError(msg)
[a, b, c, alpha, beta, gamma] = matrix2para(m)
# symmetrize the lattice
if reset:
if ltype in ["cubic", "Cubic"]:
a = b = c = (a + b + c) / 3
alpha = beta = gamma = np.pi / 2
elif ltype in ["hexagonal", "trigonal", "Hexagonal", "Trigonal"]:
a = b = (a + b) / 2
alpha = beta = np.pi / 2
gamma = np.pi * 2 / 3
elif ltype in ["tetragonal", "Tetragonal"]:
a = b = (a + b) / 2
alpha = beta = gamma = np.pi / 2
elif ltype in ["orthorhombic", "Orthorhombic"]:
alpha = beta = gamma = np.pi / 2
elif ltype in ["monoclinic", "Monoclinic"]:
alpha = gamma = np.pi / 2
# reset matrix according to the symmetry
m = para2matrix([a, b, c, alpha, beta, gamma], format=shape)
# Initialize a Lattice instance
volume = np.linalg.det(m)
l = Lattice(ltype, volume, m, PBC=PBC, **kwargs)
l.a, l.b, l.c = a, b, c
l.alpha, l.beta, l.gamma = alpha, beta, gamma
l.matrix = m
l.inv_matrix = np.linalg.inv(m)
l.ltype = ltype
l.volume = volume
l.random = False
l.allow_volume_reset = False
return l
[docs]
def is_valid_matrix(self):
"""
check if the cell parameter is reasonable or not
"""
try:
paras = [self.a, self.b, self.c, self.alpha, self.beta, self.gamma]
para2matrix(paras)
return True
except:
return False
[docs]
def is_valid_lattice(self, tol=1e-3):
ltype = self.ltype.lower()
def check_angles(angles):
return all(abs(angle - np.pi / 2) <= tol for angle in angles)
if ltype == "cubic":
return (
abs(self.a - self.b) <= tol
and abs(self.a - self.c) <= tol
and check_angles([self.alpha, self.beta, self.gamma])
)
elif ltype in ["hexagonal", "trigonal"]:
return (
abs(self.a - self.b) <= tol
and check_angles([self.alpha, self.beta])
and abs(self.gamma - 2 / 3 * np.pi) <= tol
)
elif ltype == "tetragonal":
return abs(self.a - self.b) <= tol and check_angles([self.alpha, self.beta, self.gamma])
elif ltype == "orthorhombic":
return check_angles([self.alpha, self.beta, self.gamma])
elif ltype == "monoclinic":
return check_angles([self.alpha, self.gamma])
return True
[docs]
def check_mismatch(self, trans, l_type, tol=1.0, a_tol=10):
"""
check if the lattice mismatch is big after a transformation
This is mostly used in supergroup function
QZ: to fix ===============
Args:
trans: 3*3 matrix
l_type: lattice_type like orthrhombic
tol: tolerance in a, b, c
a_tol: tolerance in alpha, beta, gamma
Returns:
True or False
"""
matrix = np.dot(trans.T, self.matrix)
l1 = Lattice.from_matrix(matrix)
l2 = Lattice.from_matrix(matrix, ltype=l_type)
(a1, b1, c1, alpha1, beta1, gamma1) = l1.get_para(degree=True)
(a2, b2, c2, alpha2, beta2, gamma2) = l2.get_para(degree=True)
abc_diff = np.abs(np.array([a2 - a1, b2 - b1, c2 - c1])).max()
ang_diff = np.abs(np.array([alpha2 - alpha1, beta2 - beta1, gamma2 - gamma1])).max()
return not (abc_diff > tol or ang_diff > a_tol)
[docs]
def get_diff(self, l_ref):
"""
get the difference in length, angle, and check if switch is needed
"""
(a1, b1, c1, alpha1, beta1, gamma1) = self.get_para(degree=True)
(a2, b2, c2, alpha2, beta2, gamma2) = l_ref.get_para(degree=True)
abc_diff = np.abs(np.array([a2 - a1, b2 - b1, c2 - c1])).max()
abc_f_diff = np.abs(np.array([(a2 - a1) / a1, (b2 - b1) / b1, (c2 - c1) / c1])).max()
ang_diff1 = abs(alpha1 - alpha2) + abs(beta1 - beta2) + abs(gamma1 - gamma2)
ang_diff2 = abs(alpha1 - alpha2)
ang_diff2 += abs(abs(beta1 - 90) - abs(beta2 - 90))
ang_diff2 += abs(gamma1 - gamma2)
# print(abc_diff, abc_f_diff, ang_diff1, ang_diff2, self.ltype)
if ang_diff1 < ang_diff2 + 0.01:
return abc_diff, abc_f_diff, ang_diff1, False
else:
if self.ltype == "monoclinic":
return abc_diff, abc_f_diff, ang_diff2, True
else:
return abc_diff, abc_f_diff, ang_diff2, False
def __str__(self):
return (
f"{self.a:8.4f}, {self.b:8.4f}, {self.c:8.4f}, {self.alpha * deg:8.4f}, "
f"{self.beta * deg:8.4f}, {self.gamma * deg:8.4f}, {self.ltype!s:s}"
)
def __repr__(self):
return str(self)
[docs]
def find_transition_to_orthoslab(self, c=(0, 0, 1), a=(1, 0, 0), m=5):
"""
Create the slab model with an approximate orthogonal box shape
"""
from pyxtal.plane import has_reduction
tol = 1e-3
direction = np.array(c)
# find the simplest a-direction
if np.dot(np.array(a), direction) < tol:
a_hkl = np.array(a)
else:
a_hkls = []
for h in range(-m, m + 1):
for k in range(-m, m + 1):
for l in range(-m, m + 1):
hkl = np.array([h, k, l])
if (
([h, k, l] != [0, 0, 0])
and (not has_reduction(hkl))
and (abs(np.dot(hkl, direction)) < tol)
):
a_hkls.append(hkl)
a_hkls = np.array(a_hkls) # ; print(a_hkls)
a_hkl = a_hkls[np.argmin(np.abs(a_hkls).sum(axis=1))]
a_vector = np.dot(a_hkl, self.matrix)
# print('a_hkl', a_hkl)
# find the simplest b-direction
b_hkl = None
min_angle_ab = float("inf")
for h in range(-m, m + 1):
for k in range(-m, m + 1):
for l in range(-m, m + 1):
hkl = np.array([h, k, l])
if ([h, k, l] != [0, 0, 0]) and (not has_reduction(hkl)) and (abs(np.dot(hkl, direction)) < tol):
vector = np.dot(hkl, self.matrix)
angle1 = angle(vector, a_vector, radians=False)
if abs(90 - angle1) < min_angle_ab:
min_angle_ab = abs(90 - angle1)
b_hkl = hkl
b_vector = vector
# print('b_hkl', b_hkl, min_angle_ab)
# change the sign
if abs(angle(np.cross(a_hkl, b_hkl), direction)) > tol:
b_hkl *= -1
b_vector *= -1
## update the c_direction
ab_plane = np.cross(a_vector, b_vector) # ; print('ab_plane', ab_plane)
c_hkl = None
min_angle_c = float("inf")
for h in range(-m, m + 1):
for k in range(-m, m + 1):
for l in range(-m, m + 1):
hkl = np.array([h, k, l])
if [h, k, l] != [0, 0, 0] and not has_reduction(hkl):
vector = np.dot(hkl, self.matrix)
angle1 = angle(vector, ab_plane, radians=False)
# print(hkl, angle)
if abs(angle1) < abs(min_angle_c):
min_angle_c = angle1
c_hkl = hkl
# print(a_hkl, b_hkl, c_hkl)
return np.vstack([a_hkl, b_hkl, c_hkl])
[docs]
def generate_cellpara(
ltype,
volume,
minvec=1.2,
minangle=np.pi / 6,
max_ratio=10.0,
min_special=None,
maxattempts=100,
random_state: None | int | Generator = None,
**kwargs,
):
"""
Generates the cell parameter (a, b, c, alpha, beta, gamma) according
to the space group symmetry and number of atoms. If the spacegroup
has centering, we will transform to conventional cell setting. If the
generated lattice does not meet the minimum angle and vector
requirements, we try to generate a new one, up to maxattempts times.
Args:
volume: volume of the conventional unit cell
minvec: minimum allowed lattice vector length (among a, b, and c)
minangle: minimum allowed lattice angle (among alpha, beta, and gamma)
max_ratio: largest allowed ratio of two lattice vector lengths
maxattempts: the maximum number of attempts for generating a lattice
kwargs: a dictionary of optional values. These include:
'unique_axis': the axis ('a', 'b', or 'c') which is unique.
'min_l': the smallest allowed cell vector.
'mid_l': the second smallest allowed cell vector.
'max_l': the third smallest allowed cell vector.
Returns:
a 6-length array representing the lattice of the unit cell. If
generation fails, outputs a warning message and returns empty
"""
if isinstance(random_state, Generator):
random_state = random_state.spawn(1)[0]
else:
random_state = np.random.default_rng(random_state)
min_special = kwargs.get("min_special", min_special) # ; print("min_special", min_special)
maxangle = np.pi - minangle
for _n in range(maxattempts):
# Triclinic
# if sg <= 2:
if ltype == "triclinic":
# Derive lattice constants from a random matrix
mat = random_shear_matrix(width=0.2, random_state=random_state)
a, b, c, alpha, beta, gamma = matrix2para(mat)
x = np.sqrt(
1
- np.cos(alpha) ** 2
- np.cos(beta) ** 2
- np.cos(gamma) ** 2
+ 2 * (np.cos(alpha) * np.cos(beta) * np.cos(gamma))
)
vec = random_vector(random_state=random_state)
abc = volume / x
xyz = vec[0] * vec[1] * vec[2]
# Monoclinic
elif ltype in ["monoclinic"]:
alpha, gamma = np.pi / 2, np.pi / 2
beta = gaussian_random_variable(minangle, maxangle, random_state=random_state)
x = np.sin(beta)
vec = random_vector(random_state=random_state)
xyz = vec[0] * vec[1] * vec[2]
abc = volume / x
xyz = vec[0] * vec[1] * vec[2]
# Orthorhombic
# elif sg <= 74:
elif ltype in ["orthorhombic"]:
alpha, beta, gamma = np.pi / 2, np.pi / 2, np.pi / 2
x = 1
vec = random_vector(random_state=random_state)
xyz = vec[0] * vec[1] * vec[2]
abc = volume / x
# Tetragonal
# elif sg <= 142:
elif ltype in ["tetragonal"]:
alpha, beta, gamma = np.pi / 2, np.pi / 2, np.pi / 2
x = 1
vec = random_vector(random_state=random_state)
c = vec[2] / (vec[0] * vec[1]) * np.cbrt(volume / x)
a = b = np.sqrt((volume / x) / c)
# Trigonal/Rhombohedral/Hexagonal
# elif sg <= 194:
elif ltype in ["hexagonal", "trigonal"]:
alpha, beta, gamma = np.pi / 2, np.pi / 2, np.pi / 3 * 2
x = np.sqrt(3.0) / 2.0
vec = random_vector(random_state=random_state)
c = vec[2] / (vec[0] * vec[1]) * np.cbrt(volume / x)
a = b = np.sqrt((volume / x) / c)
# Cubic
# else:
elif ltype in ["cubic"]:
alpha, beta, gamma = np.pi / 2, np.pi / 2, np.pi / 2
s = (volume) ** (1.0 / 3.0)
a, b, c = s, s, s
# resort a/b/c if min_special is not None for mol. xtals
if ltype in ["triclinic", "monoclinic", "orthorhombic"]:
vec *= np.cbrt(abc) / np.cbrt(xyz)
if min_special is not None:
ax = random_state.choice([0, 1, 2])
if vec[ax] < min_special:
coef = random_state.uniform(0.8, 1.2) * min_special / vec[ax]
for i in range(3):
if i == ax:
vec[i] *= coef
else:
vec[i] /= np.sqrt(coef)
[a, b, c] = vec
# Check that lattice meets requirements
maxvec = (a * b * c) / (minvec**2)
# Define limits on cell dimensions
min_l = kwargs.get("min_l", minvec)
mid_l = kwargs.get("mid_l", min_l)
max_l = kwargs.get("max_l", mid_l)
l_min = min(a, b, c)
l_max = max(a, b, c)
for x in (a, b, c):
if x <= l_max and x >= l_min:
l_mid = x
if not (l_min >= min_l and l_mid >= mid_l and l_max >= max_l):
continue
if minvec < maxvec:
# Check minimum Euclidean distances
smallvec = min(
a * np.cos(max(beta, gamma)),
b * np.cos(max(alpha, gamma)),
c * np.cos(max(alpha, beta)),
)
if (
a > minvec
and b > minvec
and c > minvec
and a < maxvec
and b < maxvec
and c < maxvec
and smallvec < minvec
and alpha > minangle
and beta > minangle
and gamma > minangle
and alpha < maxangle
and beta < maxangle
and gamma < maxangle
and a / b < max_ratio
and a / c < max_ratio
and b / c < max_ratio
and b / a < max_ratio
and c / a < max_ratio
and c / b < max_ratio
):
return np.array([a, b, c, alpha, beta, gamma])
# If maxattempts tries have been made without success
msg = f"lattice fails after {maxattempts:d} cycles"
msg += f"for volume {volume:.2f}"
raise VolumeError(msg)
# return
[docs]
def generate_cellpara_2D(
ltype,
volume,
thickness=None,
minvec=1.2,
minangle=np.pi / 6,
max_ratio=10.0,
maxattempts=100,
random_state: None | int | Generator = None,
**kwargs,
):
"""
Generates the cell parameter (a, b, c, alpha, beta, gamma) according
to the layer group symmetry and number of atoms. If the layer group
has centering, we will transform to conventional cell setting. If the
generated lattice does not meet the minimum angle and vector
requirements, we try to generate a new one, up to maxattempts times.
Note: The monoclinic layer groups have different unique axes. Groups 3-7
have unique axis c, while 8-18 have unique axis a. We use non-periodic
axis c for all layer groups.
Args:
num: International number of the space group
volume: volume of the lattice
thickness: 3rd-dimensional thickness of the unit cell. If set to None,
a thickness is chosen automatically
minvec: minimum allowed lattice vector length (among a, b, and c)
minangle: minimum allowed lattice angle (among alpha, beta, and gamma)
max_ratio: largest allowed ratio of two lattice vector lengths
maxattempts: the maximum number of attempts for generating a lattice
kwargs: a dictionary of optional values. These include:
'unique_axis': the axis ('a', 'b', or 'c') which is unique.
'min_l': the smallest allowed cell vector.
'mid_l': the second smallest allowed cell vector.
'max_l': the third smallest allowed cell vector.
Returns:
a 6-length representing the lattice vectors of the unit cell. If
generation fails, outputs a warning message and returns empty
"""
if isinstance(random_state, int):
# NOTE if random_state is an integer make a Generator to ensure randomness
# downstream that would be lost if integer seed used repeated
random_state = np.random.default_rng(random_state)
unique_axis = kwargs.get("unique_axis", "c")
# Store the non-periodic axis
NPA = 3
# Set the unique axis for monoclinic cells
# if num in range(3, 8): unique_axis = "c"
# elif num in range(8, 19): unique_axis = "a"
maxangle = np.pi - minangle
for _n in range(maxattempts):
abc = np.ones([3])
if thickness is None:
v = random_vector(random_state=random_state)
thickness1 = np.cbrt(volume) * (v[0] / (v[0] * v[1] * v[2]))
else:
thickness1 = max([3.0, thickness])
abc[NPA - 1] = thickness1
alpha, beta, gamma = np.pi / 2, np.pi / 2, np.pi / 2
# Triclinic
# if num <= 2:
if ltype == "triclinic":
mat = random_shear_matrix(width=0.2, random_state=random_state)
a, b, c, alpha, beta, gamma = matrix2para(mat)
x = np.sqrt(
1
- np.cos(alpha) ** 2
- np.cos(beta) ** 2
- np.cos(gamma) ** 2
+ 2 * (np.cos(alpha) * np.cos(beta) * np.cos(gamma))
)
abc[NPA - 1] = abc[NPA - 1] / x # scale thickness by outer product of vectors
ab = volume / (abc[NPA - 1] * x)
ratio = a / b
if NPA == 3:
abc[0] = np.sqrt(ab * ratio)
abc[1] = np.sqrt(ab / ratio)
elif NPA == 2:
abc[0] = np.sqrt(ab * ratio)
abc[2] = np.sqrt(ab / ratio)
elif NPA == 1:
abc[1] = np.sqrt(ab * ratio)
abc[2] = np.sqrt(ab / ratio)
# Monoclinic
# elif num <= 18:
elif ltype == "monoclinic":
a, b, c = random_vector(random_state=random_state)
if unique_axis == "a":
alpha = gaussian_random_variable(minangle, maxangle, random_state=random_state)
x = np.sin(alpha)
elif unique_axis == "b":
beta = gaussian_random_variable(minangle, maxangle, random_state=random_state)
x = np.sin(beta)
elif unique_axis == "c":
gamma = gaussian_random_variable(minangle, maxangle, random_state=random_state)
x = np.sin(gamma)
ab = volume / (abc[NPA - 1] * x)
ratio = a / b
if NPA == 3:
abc[0] = np.sqrt(ab * ratio)
abc[1] = np.sqrt(ab / ratio)
elif NPA == 2:
abc[0] = np.sqrt(ab * ratio)
abc[2] = np.sqrt(ab / ratio)
elif NPA == 1:
abc[1] = np.sqrt(ab * ratio)
abc[2] = np.sqrt(ab / ratio)
# Orthorhombic
# elif num <= 48:
elif ltype == "orthorhombic":
vec = random_vector(random_state=random_state)
if NPA == 3:
ratio = abs(vec[0] / vec[1]) # ratio a/b
abc[1] = np.sqrt(volume / (thickness1 * ratio))
abc[0] = abc[1] * ratio
elif NPA == 2:
ratio = abs(vec[0] / vec[2]) # ratio a/b
abc[2] = np.sqrt(volume / (thickness1 * ratio))
abc[0] = abc[2] * ratio
elif NPA == 1:
ratio = abs(vec[1] / vec[2]) # ratio a/b
abc[2] = np.sqrt(volume / (thickness1 * ratio))
abc[1] = abc[2] * ratio
# Tetragonal
# elif num <= 64:
elif ltype == "tetragonal":
if NPA == 3:
abc[0] = abc[1] = np.sqrt(volume / thickness1)
elif NPA == 2:
abc[0] = abc[1]
abc[2] = volume / (abc[NPA - 1] ** 2)
elif NPA == 1:
abc[1] = abc[0]
abc[2] = volume / (abc[NPA - 1] ** 2)
# Trigonal/Hexagonal
# elif num <= 80:
elif ltype in ["hexagonal", "trigonal"]:
gamma = np.pi / 3 * 2
x = np.sqrt(3.0) / 2.0
if NPA == 3:
abc[0] = abc[1] = np.sqrt((volume / x) / abc[NPA - 1])
elif NPA == 2:
abc[0] = abc[1]
abc[2] = (volume / x)(thickness1**2)
elif NPA == 1:
abc[1] = abc[0]
abc[2] = (volume / x) / (thickness1**2)
para = np.array([abc[0], abc[1], abc[2], alpha, beta, gamma])
a, b, c = abc[0], abc[1], abc[2]
maxvec = (a * b * c) / (minvec**2)
# Define limits on cell dimensions
min_l = kwargs.get("min_l", minvec)
mid_l = kwargs.get("mid_l", min_l)
max_l = kwargs.get("max_l", mid_l)
l_min = min(a, b, c)
l_max = max(a, b, c)
for x in (a, b, c):
if x <= l_max and x >= l_min:
l_mid = x
if not (l_min >= min_l and l_mid >= mid_l and l_max >= max_l):
continue
if minvec < maxvec:
smallvec = min(
a * np.cos(max(beta, gamma)),
b * np.cos(max(alpha, gamma)),
c * np.cos(max(alpha, beta)),
)
if (
a > minvec
and b > minvec
and c > minvec
and a < maxvec
and b < maxvec
and c < maxvec
and smallvec < minvec
and alpha > minangle
and beta > minangle
and gamma > minangle
and alpha < maxangle
and beta < maxangle
and gamma < maxangle
and a / b < max_ratio
and a / c < max_ratio
and b / c < max_ratio
and b / a < max_ratio
and c / a < max_ratio
and c / b < max_ratio
):
return para
# If maxattempts tries have been made without success
msg = f"Cannot get lattice after {maxattempts:d} cycles for volume {volume:.2f}"
raise VolumeError(msg)
[docs]
def generate_cellpara_1D(
ltype,
volume,
area=None,
minvec=1.2,
minangle=np.pi / 6,
max_ratio=10.0,
maxattempts=100,
random_state: None | int | Generator = None,
**kwargs,
):
"""
Generates a cell parameter (a, b, c, alpha, beta, gamma) according to
the rod group symmetry and number of atoms. If the rod group has centering,
we will transform to conventional cell setting. If the generated lattice
does not meet the minimum angle and vector requirements, we try to
generate a new one, up to maxattempts times.
Note: The monoclinic Rod groups have different unique axes. Groups 3-7
have unique axis a, while 8-12 have unique axis c. We use periodic
axis c for all Rod groups.
Args:
num: number of the Rod group
volume: volume of the lattice
area: cross-sectional area of the unit cell in Angstroms squared. If
set to None, a value is chosen automatically
minvec: minimum allowed lattice vector length (among a, b, and c)
minangle: minimum allowed lattice angle (among alpha, beta, and gamma)
max_ratio: largest allowed ratio of two lattice vector lengths
maxattempts: the maximum number of attempts for generating a lattice
kwargs: a dictionary of optional values. These include:
'unique_axis': the axis ('a', 'b', or 'c') which is unique.
'min_l': the smallest allowed cell vector.
'mid_l': the second smallest allowed cell vector.
'max_l': the third smallest allowed cell vector.
Returns:
a 6-length array representing the lattice of the unit cell. If
generation fails, outputs a warning message and returns empty
"""
if isinstance(random_state, int):
# NOTE if random_state is an integer make a Generator to ensure randomness
# downstream that would be lost if integer seed used repeated
random_state = np.random.default_rng(random_state)
try:
unique_axis = kwargs["unique_axis"]
except:
unique_axis = "a"
# Store the periodic axis
PA = 3
# Set the unique axis for monoclinic cells
# if num in range(3, 8): unique_axis = "a"
# elif num in range(8, 13): unique_axis = "c"
maxangle = np.pi - minangle
for _n in range(maxattempts):
abc = np.ones([3])
if area is None:
v = random_vector(random_state=random_state)
thickness1 = np.cbrt(volume) * (v[0] / (v[0] * v[1] * v[2]))
else:
thickness1 = volume / area
abc[PA - 1] = thickness1
alpha, beta, gamma = np.pi / 2, np.pi / 2, np.pi / 2
# Triclinic
# if num <= 2:
if ltype == "triclinic":
mat = random_shear_matrix(width=0.2, random_state=random_state)
a, b, c, alpha, beta, gamma = matrix2para(mat)
x = np.sqrt(
1
- np.cos(alpha) ** 2
- np.cos(beta) ** 2
- np.cos(gamma) ** 2
+ 2 * (np.cos(alpha) * np.cos(beta) * np.cos(gamma))
)
abc[PA - 1] = abc[PA - 1] / x # scale thickness by outer product of vectors
ab = volume / (abc[PA - 1] * x)
ratio = a / b
if PA == 3:
abc[0] = np.sqrt(ab * ratio)
abc[1] = np.sqrt(ab / ratio)
elif PA == 2:
abc[0] = np.sqrt(ab * ratio)
abc[2] = np.sqrt(ab / ratio)
elif PA == 1:
abc[1] = np.sqrt(ab * ratio)
abc[2] = np.sqrt(ab / ratio)
# Monoclinic
# elif num <= 12:
elif ltype == "monoclinic":
a, b, c = random_vector(random_state=random_state)
if unique_axis == "a":
alpha = gaussian_random_variable(minangle, maxangle, random_state=random_state)
x = np.sin(alpha)
elif unique_axis == "b":
beta = gaussian_random_variable(minangle, maxangle, random_state=random_state)
x = np.sin(beta)
elif unique_axis == "c":
gamma = gaussian_random_variable(minangle, maxangle, random_state=random_state)
x = np.sin(gamma)
ab = volume / (abc[PA - 1] * x)
ratio = a / b
if PA == 3:
abc[0] = np.sqrt(ab * ratio)
abc[1] = np.sqrt(ab / ratio)
elif PA == 2:
abc[0] = np.sqrt(ab * ratio)
abc[2] = np.sqrt(ab / ratio)
elif PA == 1:
abc[1] = np.sqrt(ab * ratio)
abc[2] = np.sqrt(ab / ratio)
# Orthorhombic
# lif num <= 22:
elif ltype == "orthorhombic":
vec = random_vector(random_state=random_state)
if PA == 3:
ratio = abs(vec[0] / vec[1]) # ratio a/b
abc[1] = np.sqrt(volume / (thickness1 * ratio))
abc[0] = abc[1] * ratio
elif PA == 2:
ratio = abs(vec[0] / vec[2]) # ratio a/b
abc[2] = np.sqrt(volume / (thickness1 * ratio))
abc[0] = abc[2] * ratio
elif PA == 1:
ratio = abs(vec[1] / vec[2]) # ratio a/b
abc[2] = np.sqrt(volume / (thickness1 * ratio))
abc[1] = abc[2] * ratio
# Tetragonal
# elif num <= 41:
elif ltype == "tetragonal":
if PA == 3:
abc[0] = abc[1] = np.sqrt(volume / thickness1)
elif PA == 2:
abc[0] = abc[1]
abc[2] = volume / (abc[PA - 1] ** 2)
elif PA == 1:
abc[1] = abc[0]
abc[2] = volume / (abc[PA - 1] ** 2)
# Trigonal/Rhombohedral/Hexagonal
# elif num <= 75:
elif ltype in ["hexagonal", "trigonal"]:
gamma = np.pi / 3 * 2
x = np.sqrt(3.0) / 2.0
if PA == 3:
abc[0] = abc[1] = np.sqrt((volume / x) / abc[PA - 1])
elif PA == 2:
abc[0] = abc[1]
abc[2] = (volume / x)(thickness1**2)
elif PA == 1:
abc[1] = abc[0]
abc[2] = (volume / x) / (thickness1**2)
para = np.array([abc[0], abc[1], abc[2], alpha, beta, gamma])
a, b, c = abc[0], abc[1], abc[2]
maxvec = (a * b * c) / (minvec**2)
# Define limits on cell dimensions
min_l = kwargs.get("min_l", minvec)
mid_l = kwargs.get("mid_l", min_l)
max_l = kwargs.get("max_l", mid_l)
l_min = min(a, b, c)
l_max = max(a, b, c)
for x in (a, b, c):
if x <= l_max and x >= l_min:
l_mid = x
if not (l_min >= min_l and l_mid >= mid_l and l_max >= max_l):
continue
if minvec < maxvec:
smallvec = min(
a * np.cos(max(beta, gamma)),
b * np.cos(max(alpha, gamma)),
c * np.cos(max(alpha, beta)),
)
if (
a > minvec
and b > minvec
and c > minvec
and a < maxvec
and b < maxvec
and c < maxvec
and smallvec < minvec
and alpha > minangle
and beta > minangle
and gamma > minangle
and alpha < maxangle
and beta < maxangle
and gamma < maxangle
and a / b < max_ratio
and a / c < max_ratio
and b / c < max_ratio
and b / a < max_ratio
and c / a < max_ratio
and c / b < max_ratio
):
return para
# If maxattempts tries have been made without success
msg = f"Could not get lattice after {maxattempts:d} cycles for volume {volume:.2f}"
raise VolumeError(msg)
[docs]
def generate_cellpara_0D(
ltype,
volume,
area=None,
minvec=1.2,
max_ratio=10.0,
maxattempts=100,
random_state: None | int | Generator = None,
**kwargs,
):
"""
Generates a cell parameter (a, b, c, alpha, beta, gamma) according to the
point group symmetry and number of atoms. If the generated lattice does
not meet the minimum angle and vector requirements, we try to generate
a new one, up to maxattempts times.
Args:
num: number of the Rod group
volume: volume of the lattice
area: cross-sectional area of the unit cell in Angstroms squared. If
set to None, a value is chosen automatically
minvec: minimum allowed lattice vector length (among a, b, and c)
max_ratio: largest allowed ratio of two lattice vector lengths
maxattempts: the maximum number of attempts for generating a lattice
kwargs: a dictionary of optional values. Only used for ellipsoidal
lattices, which pass the value to generate_lattice. They include:
'unique_axis': the axis ('a', 'b', or 'c') which is unique.
'min_l': the smallest allowed cell vector.
'mid_l': the second smallest allowed cell vector.
'max_l': the third smallest allowed cell vector.
Returns:
a 3x3 matrix representing the lattice vectors of the unit cell. If
generation fails, outputs a warning message and returns empty
"""
if isinstance(random_state, int):
# NOTE if random_state is an integer make a Generator to ensure randomness
# downstream that would be lost if integer seed used repeated
random_state = np.random.default_rng(random_state)
if ltype == "spherical":
# Use a cubic lattice with altered volume
a = b = c = np.cbrt((3 * volume) / (4 * np.pi))
alpha = beta = gamma = 0.5 * np.pi
return np.array([a, b, c, alpha, beta, gamma])
if ltype == "ellipsoidal":
# Use a matrix with only on-diagonal elements, with a = b
alpha, beta, gamma = np.pi / 2, np.pi / 2, np.pi / 2
x = (4.0 / 3.0) * np.pi
for _numattempts in range(maxattempts):
vec = random_vector(random_state=random_state)
c = vec[2] / (vec[0] * vec[1]) * np.cbrt(volume / x)
a = b = np.sqrt((volume / x) / c)
if (a / c < 10.0) and (c / a < 10.0):
return np.array([a, b, c, alpha, beta, gamma])
# If maxattempts tries have been made without success
msg = f"Cannot get lattice after {maxattempts:d} cycles for volume {volume:.2f}"
raise VolumeError(msg)
[docs]
def matrix2para(matrix, radians=True):
"""
Given a 3x3 matrix representing a unit cell, outputs a list of lattice
parameters.
Args:
matrix: a 3x3 array or list, where the first, second, and third rows
represent the a, b, and c vectors respectively
radians: if True, outputs angles in radians. If False, outputs in
degrees
Returns:
a 1x6 list of lattice parameters [a, b, c, alpha, beta, gamma]. a, b,
and c are the length of the lattice vectos, and alpha, beta, and gamma
are the angles between these vectors (in radians by default)
"""
cell_para = np.zeros(6)
# a
cell_para[0] = np.linalg.norm(matrix[0])
# b
cell_para[1] = np.linalg.norm(matrix[1])
# c
cell_para[2] = np.linalg.norm(matrix[2])
# alpha
cell_para[3] = angle(matrix[1], matrix[2])
# beta
cell_para[4] = angle(matrix[0], matrix[2])
# gamma
cell_para[5] = angle(matrix[0], matrix[1])
if not radians:
# convert radians to degrees
deg = 180.0 / np.pi
cell_para[3] *= deg
cell_para[4] *= deg
cell_para[5] *= deg
return cell_para
# def para2matrix(cell_para, radians=True, format="lower"):
[docs]
def para2matrix(cell_para, radians=True, format="upper"):
"""
Given a set of lattic parameters, generates a matrix representing the
lattice vectors
Args:
cell_para: a 1x6 list of lattice parameters [a, b, c, alpha, beta,
gamma]. a, b, and c are the length of the lattice vectos, and
alpha, beta, and gamma are the angles between these vectors. Can
be generated by matrix2para
radians: if True, lattice parameters should be in radians. If False,
lattice angles should be in degrees
format: a string ('lower', 'symmetric', or 'upper') for the type of
matrix to be output
Returns:
a 3x3 matrix representing the unit cell. By default (format='lower'),
the a vector is aligined along the x-axis, and the b vector is in the
y-z plane
"""
a = cell_para[0]
b = cell_para[1]
c = cell_para[2]
alpha = cell_para[3]
beta = cell_para[4]
gamma = cell_para[5]
if radians is not True:
alpha *= rad
beta *= rad
gamma *= rad
cos_alpha = np.cos(alpha)
cos_beta = np.cos(beta)
cos_gamma = np.cos(gamma)
sin_gamma = np.sin(gamma)
sin_alpha = np.sin(alpha)
matrix = np.zeros([3, 3])
if format == "lower":
# Generate a lower-diagonal matrix
c1 = c * cos_beta
c2 = (c * (cos_alpha - (cos_beta * cos_gamma))) / sin_gamma
matrix[0][0] = a
matrix[1][0] = b * cos_gamma
matrix[1][1] = b * sin_gamma
matrix[2][0] = c1
matrix[2][1] = c2
matrix[2][2] = np.sqrt(c**2 - c1**2 - c2**2)
elif format == "symmetric":
# TODO: allow generation of symmetric matrices
pass
elif format == "upper":
# Generate an upper-diagonal matrix
a3 = a * cos_beta
a2 = (a * (cos_gamma - (cos_beta * cos_alpha))) / sin_alpha
matrix[2][2] = c
matrix[1][2] = b * cos_alpha
matrix[1][1] = b * sin_alpha
matrix[0][2] = a3
matrix[0][1] = a2
tmp = a**2 - a3**2 - a2**2
if tmp > 0:
matrix[0][0] = np.sqrt(a**2 - a3**2 - a2**2)
# elif abs(tmp) < 1e-5: #tmp is very close to 0
# matrix[0][0] = 0
# print(matrix)
else:
# print(tmp)
return None
# pass
return matrix
[docs]
def gaussian_random_variable(min, max, sigma=3.0, random_state: None | int | Generator = None):
"""
Choose a random number from a Gaussian probability distribution centered
between min and max. sigma is the number of standard deviations that min
and max are away from the center. Thus, sigma is also the largest possible
number of standard deviations corresponding to the returned value. sigma=2
corresponds to a 95.45% probability of choosing a number between min and
max.
Args:
min: the minimum acceptable value
max: the maximum acceptable value
sigma: the number of standard deviations between the center and min/max
Returns:
a value chosen randomly between min and max
"""
if isinstance(random_state, Generator):
random_state = random_state.spawn(1)[0]
else:
random_state = np.random.default_rng(random_state)
center = (max + min) * 0.5
delta = np.fabs(max - min) * 0.5
ratio = delta / sigma
while True:
x = random_state.normal(scale=ratio, loc=center)
if x > min and x < max:
return x
[docs]
def random_vector(minvec=None, maxvec=None, width=0.35, unit=False, random_state: None | int | Generator = None):
"""
Generate a random vector for lattice constant generation. The ratios between
x, y, and z of the returned vector correspond to the ratios between a, b,
and c. Results in a Gaussian distribution of the natural log of the ratios.
Args:
minvec: the bottom-left-back minimum point which can be chosen
maxvec: the top-right-front maximum point which can be chosen
width: the width of the normal distribution to use when choosing values.
Passed to np.random.normal
unit: whether or not to normalize the vector to determinant 1
Returns:
a 1x3 numpy array of floats
"""
if isinstance(random_state, Generator):
random_state = random_state.spawn(1)[0]
else:
random_state = np.random.default_rng(random_state)
# TODO these were not used in the original code, moved out of the defaults
# and declared if None to avoid having lists as default arguments.
if maxvec is None:
maxvec = [1.0, 1.0, 1.0]
if minvec is None:
minvec = [0.0, 0.0, 0.0]
vec = np.exp(random_state.normal(scale=width, size=3))
if unit:
return vec / np.linalg.norm(vec)
else:
return vec
[docs]
def random_shear_matrix(width=1.0, unitary=False, random_state: None | int | Generator = None):
"""
Generate a random symmetric shear matrix with Gaussian elements. If unitary
is True, normalize to determinant 1
Args:
width: the width of the normal distribution to use when choosing values.
Passed to np.random.normal
unitary: whether or not to normalize the matrix to determinant 1
Returns:
a 3x3 numpy array of floats
"""
if isinstance(random_state, Generator):
random_state = random_state.spawn(1)[0]
else:
random_state = np.random.default_rng(random_state)
mat = np.zeros([3, 3])
determinant = 0
while determinant == 0:
a, b, c = random_state.normal(scale=width, size=3)
mat = np.array([[1, a, b], [a, 1, c], [b, c, 1]])
determinant = np.linalg.det(mat)
if unitary:
return mat / np.cbrt(np.linalg.det(mat))
else:
return mat